import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from rdkit.Chem import Draw from rdkit import Chem import selfies as sf sf_output="zju" def greet1(name): tokenizer = AutoTokenizer.from_pretrained("zjunlp/MolGen") model = AutoModelForSeq2SeqLM.from_pretrained("zjunlp/MolGen") sf_input = tokenizer(name, return_tensors="pt") # beam search molecules = model.generate(input_ids=sf_input["input_ids"], attention_mask=sf_input["attention_mask"], max_length=15, min_length=5, num_return_sequences=5, num_beams=5) sf_output = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True).replace(" ","") for g in molecules] return sf_output def greet2(name): tokenizer = AutoTokenizer.from_pretrained("zjunlp/MolGen") model = AutoModelForSeq2SeqLM.from_pretrained("zjunlp/MolGen") sf_input = tokenizer(name, return_tensors="pt") # beam search molecules = model.generate(input_ids=sf_input["input_ids"], attention_mask=sf_input["attention_mask"], max_length=15, min_length=5, num_return_sequences=5, num_beams=5) sf_output = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True).replace(" ","") for g in molecules] smis = [sf.decoder(i) for i in sf_output] mols = [] for smi in smis: mol = Chem.MolFromSmiles(smi) mols.append(mol) img = Draw.MolsToGridImage( mols, molsPerRow=4, subImgSize=(200,200), legends=['' for x in mols] ) return img def greet3(name): return name examples = [ ['[C][=C][C][=C][C][=C][Ring1][=Branch1]'],['[C]'] ] greeter_1 = gr.Interface(greet1, inputs="textbox", outputs="text",title="Molecular Language Model as Multi-task Generator", examples=examples,) greeter_2 = gr.Interface(greet2 , inputs="textbox", outputs="image") #greeter_2.launch() demo = gr.Parallel(greeter_1, greeter_2) demo.launch() #iface = gr.Interface(fn=greet2, inputs="text", outputs="image", title="Molecular Language Model as Multi-task Generator", # ) #iface.launch()