File size: 13,836 Bytes
7b918f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
import argparse
import pathlib
import yaml
import torch
import torchaudio
from torch.utils.data import DataLoader
import numpy as np
import random
import librosa
from dataset import Dataset
import pickle
from lightning_module import (
SSLStepLightningModule,
SSLDualLightningModule,
)
from utils import plot_and_save_mels
import os
import tqdm
class AETDataset(Dataset):
def __init__(self, filetxt, src_config, tar_config):
self.config = src_config
self.preprocessed_dir_src = pathlib.Path(
src_config["general"]["preprocessed_path"]
)
self.preprocessed_dir_tar = pathlib.Path(
tar_config["general"]["preprocessed_path"]
)
for item in [
"sampling_rate",
"fft_length",
"frame_length",
"frame_shift",
"fmin",
"fmax",
"n_mels",
]:
assert src_config["preprocess"][item] == tar_config["preprocess"][item]
self.spec_module = torchaudio.transforms.MelSpectrogram(
sample_rate=src_config["preprocess"]["sampling_rate"],
n_fft=src_config["preprocess"]["fft_length"],
win_length=src_config["preprocess"]["frame_length"],
hop_length=src_config["preprocess"]["frame_shift"],
f_min=src_config["preprocess"]["fmin"],
f_max=src_config["preprocess"]["fmax"],
n_mels=src_config["preprocess"]["n_mels"],
power=1,
center=True,
norm="slaney",
mel_scale="slaney",
)
with open(self.preprocessed_dir_src / filetxt, "r") as fr:
self.filelist_src = [pathlib.Path(path.strip("\n")) for path in fr]
with open(self.preprocessed_dir_tar / filetxt, "r") as fr:
self.filelist_tar = [pathlib.Path(path.strip("\n")) for path in fr]
self.d_out = {"src": {}, "tar": {}}
for item in ["wavs", "wavsaux"]:
self.d_out["src"][item] = []
self.d_out["tar"][item] = []
for swp in self.filelist_src:
if src_config["general"]["corpus_type"] == "single":
basename = str(swp.stem)
else:
basename = str(swp.parent.name) + "-" + str(swp.stem)
with open(
self.preprocessed_dir_src / "{}.pickle".format(basename), "rb"
) as fw:
d_preprocessed = pickle.load(fw)
for item in ["wavs", "wavsaux"]:
try:
self.d_out["src"][item].extend(d_preprocessed[item])
except:
pass
for twp in self.filelist_tar:
if tar_config["general"]["corpus_type"] == "single":
basename = str(twp.stem)
else:
basename = str(twp.parent.name) + "-" + str(twp.stem)
with open(
self.preprocessed_dir_tar / "{}.pickle".format(basename), "rb"
) as fw:
d_preprocessed = pickle.load(fw)
for item in ["wavs", "wavsaux"]:
try:
self.d_out["tar"][item].extend(d_preprocessed[item])
except:
pass
min_len = min(len(self.d_out["src"]["wavs"]), len(self.d_out["tar"]["wavs"]))
for spk in ["src", "tar"]:
for item in ["wavs", "wavsaux"]:
if self.d_out[spk][item] != None:
self.d_out[spk][item] = np.asarray(self.d_out[spk][item][:min_len])
def __len__(self):
return len(self.d_out["src"]["wavs"])
def __getitem__(self, idx):
d_batch = {}
for spk in ["src", "tar"]:
for item in ["wavs", "wavsaux"]:
if self.d_out[spk][item].size > 0:
d_batch["{}_{}".format(item, spk)] = torch.from_numpy(
self.d_out[spk][item][idx]
)
d_batch["{}_{}".format(item, spk)] = self.normalize_waveform(
d_batch["{}_{}".format(item, spk)], db=-3
)
d_batch["melspecs_src"] = self.calc_spectrogram(d_batch["wavs_src"])
return d_batch
class AETModule(torch.nn.Module):
"""
src: Dataset from which we extract the channel features
tar: Dataset to which the src channel features are added
"""
def __init__(self, args, chmatch_config, src_config, tar_config):
super().__init__()
if args.stage == "ssl-step":
LModule = SSLStepLightningModule
elif args.stage == "ssl-dual":
LModule = SSLDualLightningModule
else:
raise NotImplementedError()
src_model = LModule(src_config).load_from_checkpoint(
checkpoint_path=chmatch_config["general"]["source"]["ckpt_path"],
config=src_config,
)
self.src_config = src_config
self.encoder_src = src_model.encoder
if src_config["general"]["use_gst"]:
self.gst_src = src_model.gst
else:
self.channelfeats_src = src_model.channelfeats
self.channel_src = src_model.channel
def forward(self, melspecs_src, wavsaux_tar):
if self.src_config["general"]["use_gst"]:
chfeats_src = self.gst_src(melspecs_src.transpose(1, 2))
else:
_, enc_hidden_src = self.encoder_src(
melspecs_src.unsqueeze(1).transpose(2, 3)
)
chfeats_src = self.channelfeats_src(enc_hidden_src)
wavschmatch_tar = self.channel_src(wavsaux_tar, chfeats_src)
return wavschmatch_tar
def get_arg():
parser = argparse.ArgumentParser()
parser.add_argument("--stage", required=True, type=str)
parser.add_argument("--config_path", required=True, type=pathlib.Path)
parser.add_argument("--exist_src_aux", action="store_true")
parser.add_argument("--run_name", required=True, type=str)
return parser.parse_args()
def main(args, chmatch_config, device):
src_config = yaml.load(
open(chmatch_config["general"]["source"]["config_path"], "r"),
Loader=yaml.FullLoader,
)
tar_config = yaml.load(
open(chmatch_config["general"]["target"]["config_path"], "r"),
Loader=yaml.FullLoader,
)
output_path = pathlib.Path(chmatch_config["general"]["output_path"]) / args.run_name
dataset = AETDataset("test.txt", src_config, tar_config)
loader = DataLoader(dataset, batch_size=1, shuffle=False)
chmatch_module = AETModule(args, chmatch_config, src_config, tar_config).to(device)
if args.exist_src_aux:
char_vector = calc_deg_charactaristics(chmatch_config)
for idx, batch in enumerate(tqdm.tqdm(loader)):
melspecs_src = batch["melspecs_src"].to(device)
wavsdeg_src = batch["wavs_src"].to(device)
wavsaux_tar = batch["wavsaux_tar"].to(device)
if args.exist_src_aux:
wavsdegbaseline_tar = calc_deg_baseline(
batch["wavsaux_tar"], char_vector, tar_config
)
wavsdegbaseline_tar = normalize_waveform(wavsdegbaseline_tar, tar_config)
wavsdeg_tar = batch["wavs_tar"].to(device)
wavsmatch_tar = normalize_waveform(
chmatch_module(melspecs_src, wavsaux_tar).cpu().detach(), tar_config
)
torchaudio.save(
output_path / "test_wavs" / "{}-src_wavsdeg.wav".format(idx),
wavsdeg_src.cpu(),
src_config["preprocess"]["sampling_rate"],
)
torchaudio.save(
output_path / "test_wavs" / "{}-tar_wavsaux.wav".format(idx),
wavsaux_tar.cpu(),
tar_config["preprocess"]["sampling_rate"],
)
if args.exist_src_aux:
torchaudio.save(
output_path / "test_wavs" / "{}-tar_wavsdegbaseline.wav".format(idx),
wavsdegbaseline_tar.cpu(),
tar_config["preprocess"]["sampling_rate"],
)
torchaudio.save(
output_path / "test_wavs" / "{}-tar_wavsdeg.wav".format(idx),
wavsdeg_tar.cpu(),
tar_config["preprocess"]["sampling_rate"],
)
torchaudio.save(
output_path / "test_wavs" / "{}-tar_wavsmatch.wav".format(idx),
wavsmatch_tar.cpu(),
tar_config["preprocess"]["sampling_rate"],
)
plot_and_save_mels(
wavsdeg_src[0, ...].cpu().detach(),
output_path / "test_mels" / "{}-src_melsdeg.png".format(idx),
src_config,
)
plot_and_save_mels(
wavsaux_tar[0, ...].cpu().detach(),
output_path / "test_mels" / "{}-tar_melsaux.png".format(idx),
tar_config,
)
if args.exist_src_aux:
plot_and_save_mels(
wavsdegbaseline_tar[0, ...].cpu().detach(),
output_path / "test_mels" / "{}-tar_melsdegbaseline.png".format(idx),
tar_config,
)
plot_and_save_mels(
wavsdeg_tar[0, ...].cpu().detach(),
output_path / "test_mels" / "{}-tar_melsdeg.png".format(idx),
tar_config,
)
plot_and_save_mels(
wavsmatch_tar[0, ...].cpu().detach(),
output_path / "test_mels" / "{}-tar_melsmatch.png".format(idx),
tar_config,
)
def calc_deg_baseline(wav, char_vector, tar_config):
wav = wav[0, ...].cpu().detach().numpy()
spec = librosa.stft(
wav,
n_fft=tar_config["preprocess"]["fft_length"],
hop_length=tar_config["preprocess"]["frame_shift"],
win_length=tar_config["preprocess"]["frame_length"],
)
spec_converted = spec * char_vector.reshape(-1, 1)
wav_converted = librosa.istft(
spec_converted,
hop_length=tar_config["preprocess"]["frame_shift"],
win_length=tar_config["preprocess"]["frame_length"],
)
wav_converted = torch.from_numpy(wav_converted).to(torch.float32).unsqueeze(0)
return wav_converted
def calc_deg_charactaristics(chmatch_config):
src_config = yaml.load(
open(chmatch_config["general"]["source"]["config_path"], "r"),
Loader=yaml.FullLoader,
)
tar_config = yaml.load(
open(chmatch_config["general"]["target"]["config_path"], "r"),
Loader=yaml.FullLoader,
)
# configs
preprocessed_dir = pathlib.Path(src_config["general"]["preprocessed_path"])
n_train = src_config["preprocess"]["n_train"]
SR = src_config["preprocess"]["sampling_rate"]
os.makedirs(preprocessed_dir, exist_ok=True)
sourcepath = pathlib.Path(src_config["general"]["source_path"])
if src_config["general"]["corpus_type"] == "single":
fulllist = list(sourcepath.glob("*.wav"))
random.seed(0)
random.shuffle(fulllist)
train_filelist = fulllist[:n_train]
elif src_config["general"]["corpus_type"] == "multi-seen":
fulllist = list(sourcepath.glob("*/*.wav"))
random.seed(0)
random.shuffle(fulllist)
train_filelist = fulllist[:n_train]
elif src_config["general"]["corpus_type"] == "multi-unseen":
spk_list = list(set([x.parent for x in sourcepath.glob("*/*.wav")]))
train_filelist = []
random.seed(0)
random.shuffle(spk_list)
for i, spk in enumerate(spk_list):
sourcespkpath = sourcepath / spk
if i < n_train:
train_filelist.extend(list(sourcespkpath.glob("*.wav")))
else:
raise NotImplementedError(
"corpus_type specified in config.yaml should be {single, multi-seen, multi-unseen}"
)
specs_all = np.zeros((tar_config["preprocess"]["fft_length"] // 2 + 1, 1))
for wp in tqdm.tqdm(train_filelist):
wav, _ = librosa.load(wp, sr=SR)
spec = np.abs(
librosa.stft(
wav,
n_fft=src_config["preprocess"]["fft_length"],
hop_length=src_config["preprocess"]["frame_shift"],
win_length=src_config["preprocess"]["frame_length"],
)
)
auxpath = pathlib.Path(src_config["general"]["aux_path"])
if src_config["general"]["corpus_type"] == "single":
wav_aux, _ = librosa.load(auxpath / wp.name, sr=SR)
else:
wav_aux, _ = librosa.load(auxpath / wp.parent.name / wp.name, sr=SR)
spec_aux = np.abs(
librosa.stft(
wav_aux,
n_fft=src_config["preprocess"]["fft_length"],
hop_length=src_config["preprocess"]["frame_shift"],
win_length=src_config["preprocess"]["frame_length"],
)
)
min_len = min(spec.shape[1], spec_aux.shape[1])
spec_diff = spec[:, :min_len] / (spec_aux[:, :min_len] + 1e-10)
specs_all = np.hstack([specs_all, np.mean(spec_diff, axis=1).reshape(-1, 1)])
char_vector = np.mean(specs_all, axis=1)
char_vector = char_vector / (np.sum(char_vector) + 1e-10)
return char_vector
def normalize_waveform(wav, tar_config, db=-3):
wav, _ = torchaudio.sox_effects.apply_effects_tensor(
wav,
tar_config["preprocess"]["sampling_rate"],
[["norm", "{}".format(db)]],
)
return wav
if __name__ == "__main__":
args = get_arg()
chmatch_config = yaml.load(open(args.config_path, "r"), Loader=yaml.FullLoader)
output_path = pathlib.Path(chmatch_config["general"]["output_path"]) / args.run_name
os.makedirs(output_path, exist_ok=True)
os.makedirs(output_path / "test_wavs", exist_ok=True)
os.makedirs(output_path / "test_mels", exist_ok=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
main(args, chmatch_config, device)
|