import csv from datetime import datetime import os from typing import Optional import gradio as gr from convert import convert from huggingface_hub import HfApi, Repository DATASET_REPO_URL = "https://huggingface.co/datasets/safetensors/conversions" DATA_FILENAME = "data.csv" DATA_FILE = os.path.join("data", DATA_FILENAME) HF_TOKEN = os.environ.get("HF_TOKEN") repo: Optional[Repository] = None # TODO if False and HF_TOKEN: repo = Repository(local_dir="data", clone_from=DATASET_REPO_URL, token=HF_TOKEN) def run(token: str, model_id: str) -> str: if token == "" or model_id == "": return """ ### Invalid input 🐞 Please fill a token and model_id. """ try: api = HfApi(token=token) is_private = api.model_info(repo_id=model_id).private print("is_private", is_private) commit_info, errors = convert(api=api, model_id=model_id) print("[commit_info]", commit_info) # save in a (public) dataset: # TODO False because of LFS bug. if False and repo is not None and not is_private: repo.git_pull(rebase=True) print("pulled") with open(DATA_FILE, "a") as csvfile: writer = csv.DictWriter( csvfile, fieldnames=["model_id", "pr_url", "time"] ) writer.writerow( { "model_id": model_id, "pr_url": commit_info.pr_url, "time": str(datetime.now()), } ) commit_url = repo.push_to_hub() print("[dataset]", commit_url) string = f""" ### Success 🔥 Yay! This model was successfully converted and a PR was open using your token, here: [{commit_info.pr_url}]({commit_info.pr_url}) """ if errors: string += "\nErrors during conversion:\n" string += "\n".join(f"Error while converting {filename}: {e}, skipped conversion" for filename, e in errors) return string except Exception as e: return f""" ### Error 😢😢😢 {e} """ DESCRIPTION = """ EXPERIMENTAL convertion which should use less disk to enable converting larger checkpoints. But potential issues on some weights sharing """ demo = gr.Interface( title="Convert any model to Safetensors and open a PR", description=DESCRIPTION, allow_flagging="never", article="Check out the [Safetensors repo on GitHub](https://github.com/huggingface/safetensors)", inputs=[ gr.Text(max_lines=1, label="your_hf_token"), gr.Text(max_lines=1, label="model_id"), ], outputs=[gr.Markdown(label="output")], fn=run, ).queue(max_size=10, concurrency_count=1) demo.launch(show_api=True)