Spaces:
Paused
Paused
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
import tiktoken | |
import gradio as gr | |
# Define the model architecture | |
class GPTConfig: | |
def __init__(self): | |
self.block_size = 1024 | |
self.vocab_size = 50304 | |
self.n_layer = 12 | |
self.n_head = 12 | |
self.n_embd = 768 | |
class CausalSelfAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
assert config.n_embd % config.n_head == 0 | |
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) | |
self.c_proj = nn.Linear(config.n_embd, config.n_embd) | |
self.n_head = config.n_head | |
self.n_embd = config.n_embd | |
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size)) | |
def forward(self, x): | |
B, T, C = x.size() | |
q, k, v = self.c_attn(x).split(self.n_embd, dim=2) | |
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=True) | |
y = y.transpose(1, 2).contiguous().view(B, T, C) | |
return self.c_proj(y) | |
class MLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) | |
self.gelu = nn.GELU() | |
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) | |
def forward(self, x): | |
return self.c_proj(self.gelu(self.c_fc(x))) | |
class Block(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.ln_1 = nn.LayerNorm(config.n_embd) | |
self.attn = CausalSelfAttention(config) | |
self.ln_2 = nn.LayerNorm(config.n_embd) | |
self.mlp = MLP(config) | |
def forward(self, x): | |
x = x + self.attn(self.ln_1(x)) | |
x = x + self.mlp(self.ln_2(x)) | |
return x | |
class GPT(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.transformer = nn.ModuleDict(dict( | |
wte = nn.Embedding(config.vocab_size, config.n_embd), | |
wpe = nn.Embedding(config.block_size, config.n_embd), | |
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), | |
ln_f = nn.LayerNorm(config.n_embd), | |
)) | |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
self.transformer.wte.weight = self.lm_head.weight | |
self.apply(self._init_weights) | |
def _init_weights(self, module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
if module.bias is not None: | |
torch.nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Embedding): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
def forward(self, idx, targets=None): | |
device = idx.device | |
b, t = idx.size() | |
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" | |
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) | |
tok_emb = self.transformer.wte(idx) | |
pos_emb = self.transformer.wpe(pos) | |
x = tok_emb + pos_emb | |
for block in self.transformer.h: | |
x = block(x) | |
x = self.transformer.ln_f(x) | |
logits = self.lm_head(x) | |
loss = None | |
if targets is not None: | |
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) | |
return logits, loss | |
# Load the model | |
def load_model(model_path): | |
config = GPTConfig() | |
model = GPT(config) | |
checkpoint = torch.load(model_path, map_location=torch.device('cpu')) | |
print("Checkpoint keys:", checkpoint.keys()) # Debug print | |
if 'model_state_dict' in checkpoint: | |
model.load_state_dict(checkpoint['model_state_dict']) | |
else: | |
model.load_state_dict(checkpoint) | |
model.eval() | |
return model | |
# Load the model | |
model = load_model('gpt_5000.pt') # Replace with the actual path to your .pt file | |
enc = tiktoken.get_encoding('gpt2') | |
# Improved text generation function | |
def generate_text(prompt, max_length=100, temperature=0.7, top_k=50): | |
input_ids = torch.tensor(enc.encode(prompt)).unsqueeze(0) | |
generated = [] | |
with torch.no_grad(): | |
for _ in range(max_length): | |
outputs, _ = model(input_ids) | |
next_token_logits = outputs[:, -1, :] | |
# Apply temperature | |
next_token_logits = next_token_logits / temperature | |
# Apply top-k filtering | |
top_k_logits, top_k_indices = torch.topk(next_token_logits, top_k, dim=-1) | |
next_token_probs = F.softmax(top_k_logits, dim=-1) | |
# Sample from the filtered distribution | |
next_token_index = torch.multinomial(next_token_probs, num_samples=1) | |
next_token = top_k_indices.gather(-1, next_token_index) | |
input_ids = torch.cat([input_ids, next_token], dim=-1) | |
generated.append(next_token.item()) | |
# Stop if we generate a newline, but only after generating at least 20 tokens | |
if next_token.item() == enc.encode('\n')[0] and len(generated) > 20: | |
break | |
generated_text = enc.decode(generated) | |
return prompt + generated_text | |
# Gradio interface | |
def gradio_generate(prompt, max_length, temperature, top_k): | |
return generate_text(prompt, max_length, temperature, top_k) | |
iface = gr.Interface( | |
fn=gradio_generate, | |
inputs=[ | |
gr.Textbox(label="Prompt", placeholder="Enter your prompt here..."), | |
gr.Slider(minimum=20, maximum=500, value=100, step=1, label="Max Length"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top-k") | |
], | |
outputs=gr.Textbox(label="Generated Text"), | |
title="GPT Text Generator", | |
description="Enter a prompt and adjust parameters to generate text using a fine-tuned GPT model." | |
) | |
# Launch the app | |
iface.launch() |