sagar007 commited on
Commit
532845f
·
verified ·
1 Parent(s): 181cfde

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +212 -2
app.py CHANGED
@@ -16,7 +16,100 @@ except ImportError:
16
  return func
17
  spaces = type('', (), {'GPU': dummy_gpu_decorator})()
18
 
19
- # ... (keep the model architecture classes as they are)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  # Update the load_model function
22
  @spaces.GPU
@@ -79,4 +172,121 @@ async def gradio_generate(prompt, max_length, temperature, top_k):
79
  output += token
80
  yield output
81
 
82
- # The rest of your Gradio interface code remains the same
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  return func
17
  spaces = type('', (), {'GPU': dummy_gpu_decorator})()
18
 
19
+ # Define the GPTConfig class
20
+ class GPTConfig:
21
+ def __init__(self):
22
+ self.block_size = 1024
23
+ self.vocab_size = 50304
24
+ self.n_layer = 12
25
+ self.n_head = 12
26
+ self.n_embd = 768
27
+
28
+ # Define other necessary classes
29
+ class CausalSelfAttention(nn.Module):
30
+ def __init__(self, config):
31
+ super().__init__()
32
+ assert config.n_embd % config.n_head == 0
33
+ self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
34
+ self.c_proj = nn.Linear(config.n_embd, config.n_embd)
35
+ self.n_head = config.n_head
36
+ self.n_embd = config.n_embd
37
+ self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
38
+
39
+ def forward(self, x):
40
+ B, T, C = x.size()
41
+ q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
42
+ k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
43
+ q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
44
+ v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
45
+ y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=True)
46
+ y = y.transpose(1, 2).contiguous().view(B, T, C)
47
+ return self.c_proj(y)
48
+
49
+ class MLP(nn.Module):
50
+ def __init__(self, config):
51
+ super().__init__()
52
+ self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
53
+ self.gelu = nn.GELU()
54
+ self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
55
+
56
+ def forward(self, x):
57
+ return self.c_proj(self.gelu(self.c_fc(x)))
58
+
59
+ class Block(nn.Module):
60
+ def __init__(self, config):
61
+ super().__init__()
62
+ self.ln_1 = nn.LayerNorm(config.n_embd)
63
+ self.attn = CausalSelfAttention(config)
64
+ self.ln_2 = nn.LayerNorm(config.n_embd)
65
+ self.mlp = MLP(config)
66
+
67
+ def forward(self, x):
68
+ x = x + self.attn(self.ln_1(x))
69
+ x = x + self.mlp(self.ln_2(x))
70
+ return x
71
+
72
+ class GPT(nn.Module):
73
+ def __init__(self, config):
74
+ super().__init__()
75
+ self.config = config
76
+ self.transformer = nn.ModuleDict(dict(
77
+ wte = nn.Embedding(config.vocab_size, config.n_embd),
78
+ wpe = nn.Embedding(config.block_size, config.n_embd),
79
+ h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
80
+ ln_f = nn.LayerNorm(config.n_embd),
81
+ ))
82
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
83
+ self.transformer.wte.weight = self.lm_head.weight
84
+ self.apply(self._init_weights)
85
+
86
+ def _init_weights(self, module):
87
+ if isinstance(module, nn.Linear):
88
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
89
+ if module.bias is not None:
90
+ torch.nn.init.zeros_(module.bias)
91
+ elif isinstance(module, nn.Embedding):
92
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
93
+
94
+ def forward(self, idx, targets=None):
95
+ device = idx.device
96
+ b, t = idx.size()
97
+ assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
98
+ pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0)
99
+
100
+ tok_emb = self.transformer.wte(idx)
101
+ pos_emb = self.transformer.wpe(pos)
102
+ x = tok_emb + pos_emb
103
+ for block in self.transformer.h:
104
+ x = block(x)
105
+ x = self.transformer.ln_f(x)
106
+ logits = self.lm_head(x)
107
+
108
+ loss = None
109
+ if targets is not None:
110
+ loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
111
+
112
+ return logits, loss
113
 
114
  # Update the load_model function
115
  @spaces.GPU
 
172
  output += token
173
  yield output
174
 
175
+ # # Your existing imports and model code here...
176
+
177
+ css = """
178
+ <style>
179
+ body {
180
+ background-color: #0f1624;
181
+ color: #e0e0e0;
182
+ font-family: 'Courier New', monospace;
183
+ background-image:
184
+ radial-gradient(white, rgba(255,255,255,.2) 2px, transparent 40px),
185
+ radial-gradient(white, rgba(255,255,255,.15) 1px, transparent 30px),
186
+ radial-gradient(white, rgba(255,255,255,.1) 2px, transparent 40px),
187
+ radial-gradient(rgba(255,255,255,.4), rgba(255,255,255,.1) 2px, transparent 30px);
188
+ background-size: 550px 550px, 350px 350px, 250px 250px, 150px 150px;
189
+ background-position: 0 0, 40px 60px, 130px 270px, 70px 100px;
190
+ animation: backgroundScroll 60s linear infinite;
191
+ }
192
+ @keyframes backgroundScroll {
193
+ 0% { background-position: 0 0, 40px 60px, 130px 270px, 70px 100px; }
194
+ 100% { background-position: 550px 550px, 590px 610px, 680px 820px, 620px 650px; }
195
+ }
196
+ .container { max-width: 800px; margin: 0 auto; padding: 20px; }
197
+ .header {
198
+ text-align: center;
199
+ margin-bottom: 30px;
200
+ font-family: 'Copperplate', fantasy;
201
+ color: #ffd700;
202
+ text-shadow: 0 0 10px #ffd700, 0 0 20px #ffd700, 0 0 30px #ffd700;
203
+ }
204
+ .chat-box {
205
+ background-color: rgba(42, 42, 42, 0.7);
206
+ border-radius: 15px;
207
+ padding: 20px;
208
+ margin-bottom: 20px;
209
+ box-shadow: 0 0 20px rgba(255, 215, 0, 0.3);
210
+ }
211
+ .user-input {
212
+ background-color: rgba(58, 58, 58, 0.8);
213
+ border: 2px solid #ffd700;
214
+ color: #ffffff;
215
+ padding: 10px;
216
+ border-radius: 5px;
217
+ width: 100%;
218
+ transition: all 0.3s ease;
219
+ }
220
+ .user-input:focus {
221
+ box-shadow: 0 0 15px #ffd700;
222
+ }
223
+ .generate-btn {
224
+ background-color: #ffd700;
225
+ color: #0f1624;
226
+ border: none;
227
+ padding: 10px 20px;
228
+ border-radius: 5px;
229
+ cursor: pointer;
230
+ font-weight: bold;
231
+ transition: all 0.3s ease;
232
+ }
233
+ .generate-btn:hover {
234
+ background-color: #ffec8b;
235
+ transform: scale(1.05);
236
+ }
237
+ .output-box {
238
+ background-color: rgba(42, 42, 42, 0.7);
239
+ border-radius: 15px;
240
+ padding: 20px;
241
+ margin-top: 20px;
242
+ min-height: 100px;
243
+ border: 1px solid #ffd700;
244
+ white-space: pre-wrap;
245
+ font-family: 'Georgia', serif;
246
+ line-height: 1.6;
247
+ box-shadow: inset 0 0 10px rgba(255, 215, 0, 0.3);
248
+ }
249
+ .gr-slider {
250
+ --slider-color: #ffd700;
251
+ }
252
+ .gr-box {
253
+ border-color: #ffd700;
254
+ background-color: rgba(42, 42, 42, 0.7);
255
+ }
256
+ </style>
257
+ """
258
+
259
+ with gr.Blocks(css=css) as demo:
260
+ gr.HTML("<div class='header'><h1>🌟 Enchanted Tales Generator 🌟</h1></div>")
261
+
262
+ with gr.Row():
263
+ with gr.Column(scale=3):
264
+ prompt = gr.Textbox(
265
+ placeholder="Begin your magical journey here (e.g., 'In a realm beyond the mists of time...')",
266
+ label="Story Incantation",
267
+ elem_classes="user-input"
268
+ )
269
+ with gr.Column(scale=1):
270
+ generate_btn = gr.Button("Weave the Tale", elem_classes="generate-btn")
271
+
272
+ with gr.Row():
273
+ max_length = gr.Slider(minimum=50, maximum=500, value=432, step=1, label="Scroll Length")
274
+ temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.8, step=0.1, label="Magical Intensity")
275
+ top_k = gr.Slider(minimum=1, maximum=100, value=40, step=1, label="Arcane Diversity")
276
+
277
+ output = gr.Markdown(elem_classes="output-box")
278
+
279
+ generate_btn.click(
280
+ gradio_generate,
281
+ inputs=[prompt, max_length, temperature, top_k],
282
+ outputs=output
283
+ )
284
+
285
+ gr.HTML("""
286
+ <div style="text-align: center; margin-top: 20px; font-style: italic; color: #ffd700;">
287
+ "In the realm of imagination, every word is a spell, every sentence a charm."
288
+ </div>
289
+ """)
290
+
291
+ if __name__ == "__main__":
292
+ demo.launch()