Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -16,7 +16,100 @@ except ImportError:
|
|
16 |
return func
|
17 |
spaces = type('', (), {'GPU': dummy_gpu_decorator})()
|
18 |
|
19 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
# Update the load_model function
|
22 |
@spaces.GPU
|
@@ -79,4 +172,121 @@ async def gradio_generate(prompt, max_length, temperature, top_k):
|
|
79 |
output += token
|
80 |
yield output
|
81 |
|
82 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
return func
|
17 |
spaces = type('', (), {'GPU': dummy_gpu_decorator})()
|
18 |
|
19 |
+
# Define the GPTConfig class
|
20 |
+
class GPTConfig:
|
21 |
+
def __init__(self):
|
22 |
+
self.block_size = 1024
|
23 |
+
self.vocab_size = 50304
|
24 |
+
self.n_layer = 12
|
25 |
+
self.n_head = 12
|
26 |
+
self.n_embd = 768
|
27 |
+
|
28 |
+
# Define other necessary classes
|
29 |
+
class CausalSelfAttention(nn.Module):
|
30 |
+
def __init__(self, config):
|
31 |
+
super().__init__()
|
32 |
+
assert config.n_embd % config.n_head == 0
|
33 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
34 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
35 |
+
self.n_head = config.n_head
|
36 |
+
self.n_embd = config.n_embd
|
37 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
38 |
+
|
39 |
+
def forward(self, x):
|
40 |
+
B, T, C = x.size()
|
41 |
+
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
|
42 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
43 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
44 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
45 |
+
y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=True)
|
46 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C)
|
47 |
+
return self.c_proj(y)
|
48 |
+
|
49 |
+
class MLP(nn.Module):
|
50 |
+
def __init__(self, config):
|
51 |
+
super().__init__()
|
52 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
53 |
+
self.gelu = nn.GELU()
|
54 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
55 |
+
|
56 |
+
def forward(self, x):
|
57 |
+
return self.c_proj(self.gelu(self.c_fc(x)))
|
58 |
+
|
59 |
+
class Block(nn.Module):
|
60 |
+
def __init__(self, config):
|
61 |
+
super().__init__()
|
62 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
63 |
+
self.attn = CausalSelfAttention(config)
|
64 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
65 |
+
self.mlp = MLP(config)
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
x = x + self.attn(self.ln_1(x))
|
69 |
+
x = x + self.mlp(self.ln_2(x))
|
70 |
+
return x
|
71 |
+
|
72 |
+
class GPT(nn.Module):
|
73 |
+
def __init__(self, config):
|
74 |
+
super().__init__()
|
75 |
+
self.config = config
|
76 |
+
self.transformer = nn.ModuleDict(dict(
|
77 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
78 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
79 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
80 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
81 |
+
))
|
82 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
83 |
+
self.transformer.wte.weight = self.lm_head.weight
|
84 |
+
self.apply(self._init_weights)
|
85 |
+
|
86 |
+
def _init_weights(self, module):
|
87 |
+
if isinstance(module, nn.Linear):
|
88 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
89 |
+
if module.bias is not None:
|
90 |
+
torch.nn.init.zeros_(module.bias)
|
91 |
+
elif isinstance(module, nn.Embedding):
|
92 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
93 |
+
|
94 |
+
def forward(self, idx, targets=None):
|
95 |
+
device = idx.device
|
96 |
+
b, t = idx.size()
|
97 |
+
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
|
98 |
+
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0)
|
99 |
+
|
100 |
+
tok_emb = self.transformer.wte(idx)
|
101 |
+
pos_emb = self.transformer.wpe(pos)
|
102 |
+
x = tok_emb + pos_emb
|
103 |
+
for block in self.transformer.h:
|
104 |
+
x = block(x)
|
105 |
+
x = self.transformer.ln_f(x)
|
106 |
+
logits = self.lm_head(x)
|
107 |
+
|
108 |
+
loss = None
|
109 |
+
if targets is not None:
|
110 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
|
111 |
+
|
112 |
+
return logits, loss
|
113 |
|
114 |
# Update the load_model function
|
115 |
@spaces.GPU
|
|
|
172 |
output += token
|
173 |
yield output
|
174 |
|
175 |
+
# # Your existing imports and model code here...
|
176 |
+
|
177 |
+
css = """
|
178 |
+
<style>
|
179 |
+
body {
|
180 |
+
background-color: #0f1624;
|
181 |
+
color: #e0e0e0;
|
182 |
+
font-family: 'Courier New', monospace;
|
183 |
+
background-image:
|
184 |
+
radial-gradient(white, rgba(255,255,255,.2) 2px, transparent 40px),
|
185 |
+
radial-gradient(white, rgba(255,255,255,.15) 1px, transparent 30px),
|
186 |
+
radial-gradient(white, rgba(255,255,255,.1) 2px, transparent 40px),
|
187 |
+
radial-gradient(rgba(255,255,255,.4), rgba(255,255,255,.1) 2px, transparent 30px);
|
188 |
+
background-size: 550px 550px, 350px 350px, 250px 250px, 150px 150px;
|
189 |
+
background-position: 0 0, 40px 60px, 130px 270px, 70px 100px;
|
190 |
+
animation: backgroundScroll 60s linear infinite;
|
191 |
+
}
|
192 |
+
@keyframes backgroundScroll {
|
193 |
+
0% { background-position: 0 0, 40px 60px, 130px 270px, 70px 100px; }
|
194 |
+
100% { background-position: 550px 550px, 590px 610px, 680px 820px, 620px 650px; }
|
195 |
+
}
|
196 |
+
.container { max-width: 800px; margin: 0 auto; padding: 20px; }
|
197 |
+
.header {
|
198 |
+
text-align: center;
|
199 |
+
margin-bottom: 30px;
|
200 |
+
font-family: 'Copperplate', fantasy;
|
201 |
+
color: #ffd700;
|
202 |
+
text-shadow: 0 0 10px #ffd700, 0 0 20px #ffd700, 0 0 30px #ffd700;
|
203 |
+
}
|
204 |
+
.chat-box {
|
205 |
+
background-color: rgba(42, 42, 42, 0.7);
|
206 |
+
border-radius: 15px;
|
207 |
+
padding: 20px;
|
208 |
+
margin-bottom: 20px;
|
209 |
+
box-shadow: 0 0 20px rgba(255, 215, 0, 0.3);
|
210 |
+
}
|
211 |
+
.user-input {
|
212 |
+
background-color: rgba(58, 58, 58, 0.8);
|
213 |
+
border: 2px solid #ffd700;
|
214 |
+
color: #ffffff;
|
215 |
+
padding: 10px;
|
216 |
+
border-radius: 5px;
|
217 |
+
width: 100%;
|
218 |
+
transition: all 0.3s ease;
|
219 |
+
}
|
220 |
+
.user-input:focus {
|
221 |
+
box-shadow: 0 0 15px #ffd700;
|
222 |
+
}
|
223 |
+
.generate-btn {
|
224 |
+
background-color: #ffd700;
|
225 |
+
color: #0f1624;
|
226 |
+
border: none;
|
227 |
+
padding: 10px 20px;
|
228 |
+
border-radius: 5px;
|
229 |
+
cursor: pointer;
|
230 |
+
font-weight: bold;
|
231 |
+
transition: all 0.3s ease;
|
232 |
+
}
|
233 |
+
.generate-btn:hover {
|
234 |
+
background-color: #ffec8b;
|
235 |
+
transform: scale(1.05);
|
236 |
+
}
|
237 |
+
.output-box {
|
238 |
+
background-color: rgba(42, 42, 42, 0.7);
|
239 |
+
border-radius: 15px;
|
240 |
+
padding: 20px;
|
241 |
+
margin-top: 20px;
|
242 |
+
min-height: 100px;
|
243 |
+
border: 1px solid #ffd700;
|
244 |
+
white-space: pre-wrap;
|
245 |
+
font-family: 'Georgia', serif;
|
246 |
+
line-height: 1.6;
|
247 |
+
box-shadow: inset 0 0 10px rgba(255, 215, 0, 0.3);
|
248 |
+
}
|
249 |
+
.gr-slider {
|
250 |
+
--slider-color: #ffd700;
|
251 |
+
}
|
252 |
+
.gr-box {
|
253 |
+
border-color: #ffd700;
|
254 |
+
background-color: rgba(42, 42, 42, 0.7);
|
255 |
+
}
|
256 |
+
</style>
|
257 |
+
"""
|
258 |
+
|
259 |
+
with gr.Blocks(css=css) as demo:
|
260 |
+
gr.HTML("<div class='header'><h1>🌟 Enchanted Tales Generator 🌟</h1></div>")
|
261 |
+
|
262 |
+
with gr.Row():
|
263 |
+
with gr.Column(scale=3):
|
264 |
+
prompt = gr.Textbox(
|
265 |
+
placeholder="Begin your magical journey here (e.g., 'In a realm beyond the mists of time...')",
|
266 |
+
label="Story Incantation",
|
267 |
+
elem_classes="user-input"
|
268 |
+
)
|
269 |
+
with gr.Column(scale=1):
|
270 |
+
generate_btn = gr.Button("Weave the Tale", elem_classes="generate-btn")
|
271 |
+
|
272 |
+
with gr.Row():
|
273 |
+
max_length = gr.Slider(minimum=50, maximum=500, value=432, step=1, label="Scroll Length")
|
274 |
+
temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.8, step=0.1, label="Magical Intensity")
|
275 |
+
top_k = gr.Slider(minimum=1, maximum=100, value=40, step=1, label="Arcane Diversity")
|
276 |
+
|
277 |
+
output = gr.Markdown(elem_classes="output-box")
|
278 |
+
|
279 |
+
generate_btn.click(
|
280 |
+
gradio_generate,
|
281 |
+
inputs=[prompt, max_length, temperature, top_k],
|
282 |
+
outputs=output
|
283 |
+
)
|
284 |
+
|
285 |
+
gr.HTML("""
|
286 |
+
<div style="text-align: center; margin-top: 20px; font-style: italic; color: #ffd700;">
|
287 |
+
"In the realm of imagination, every word is a spell, every sentence a charm."
|
288 |
+
</div>
|
289 |
+
""")
|
290 |
+
|
291 |
+
if __name__ == "__main__":
|
292 |
+
demo.launch()
|