Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -28,6 +28,7 @@ class LLaVAPhiModel:
|
|
28 |
logging.error(f"Failed to load CLIP processor: {str(e)}")
|
29 |
self.processor = None
|
30 |
|
|
|
31 |
self.history = []
|
32 |
self.model = None
|
33 |
self.clip = None
|
@@ -36,13 +37,12 @@ class LLaVAPhiModel:
|
|
36 |
def ensure_models_loaded(self):
|
37 |
"""Ensure models are loaded in GPU context"""
|
38 |
if self.model is None:
|
39 |
-
#
|
40 |
from transformers import BitsAndBytesConfig
|
41 |
quantization_config = BitsAndBytesConfig(
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
bnb_4bit_quant_type="nf4"
|
46 |
)
|
47 |
|
48 |
try:
|
@@ -116,17 +116,21 @@ class LLaVAPhiModel:
|
|
116 |
message = "Note: Image processing is not available - continuing with text only.\n" + message
|
117 |
|
118 |
prompt = f"human: {'<image>' if has_image else ''}\n{message}\ngpt:"
|
|
|
|
|
119 |
context = ""
|
120 |
-
for turn in self.history[-
|
121 |
context += f"human: {turn[0]}\ngpt: {turn[1]}\n"
|
122 |
|
123 |
full_prompt = context + prompt
|
|
|
|
|
124 |
inputs = self.tokenizer(
|
125 |
full_prompt,
|
126 |
return_tensors="pt",
|
127 |
padding=True,
|
128 |
truncation=True,
|
129 |
-
max_length=512
|
130 |
)
|
131 |
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
132 |
|
@@ -134,15 +138,16 @@ class LLaVAPhiModel:
|
|
134 |
inputs["image_features"] = image_features
|
135 |
|
136 |
with torch.no_grad():
|
|
|
137 |
outputs = self.model.generate(
|
138 |
**inputs,
|
139 |
max_new_tokens=256,
|
140 |
min_length=20,
|
141 |
-
temperature=0.7
|
142 |
do_sample=True,
|
143 |
-
top_p=0.
|
144 |
-
top_k=
|
145 |
-
repetition_penalty=1.
|
146 |
no_repeat_ngram_size=3,
|
147 |
use_cache=True,
|
148 |
pad_token_id=self.tokenizer.pad_token_id,
|
@@ -150,30 +155,34 @@ class LLaVAPhiModel:
|
|
150 |
)
|
151 |
else:
|
152 |
prompt = f"human: {message}\ngpt:"
|
|
|
153 |
context = ""
|
154 |
-
for turn in self.history[-
|
155 |
context += f"human: {turn[0]}\ngpt: {turn[1]}\n"
|
156 |
|
157 |
full_prompt = context + prompt
|
|
|
|
|
158 |
inputs = self.tokenizer(
|
159 |
full_prompt,
|
160 |
return_tensors="pt",
|
161 |
padding=True,
|
162 |
truncation=True,
|
163 |
-
max_length=512
|
164 |
)
|
165 |
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
166 |
|
167 |
with torch.no_grad():
|
|
|
168 |
outputs = self.model.generate(
|
169 |
**inputs,
|
170 |
-
max_new_tokens=150
|
171 |
min_length=20,
|
172 |
-
temperature=0.6
|
173 |
do_sample=True,
|
174 |
-
top_p=0.
|
175 |
-
top_k=
|
176 |
-
repetition_penalty=1.
|
177 |
no_repeat_ngram_size=4,
|
178 |
use_cache=True,
|
179 |
pad_token_id=self.tokenizer.pad_token_id,
|
@@ -202,6 +211,15 @@ class LLaVAPhiModel:
|
|
202 |
self.history = []
|
203 |
return None
|
204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
def create_demo():
|
206 |
try:
|
207 |
model = LLaVAPhiModel()
|
@@ -209,7 +227,7 @@ def create_demo():
|
|
209 |
with gr.Blocks(css="footer {visibility: hidden}") as demo:
|
210 |
gr.Markdown(
|
211 |
"""
|
212 |
-
# LLaVA-Phi Demo (
|
213 |
Chat with a vision-language model that can understand both text and images.
|
214 |
"""
|
215 |
)
|
@@ -229,6 +247,15 @@ def create_demo():
|
|
229 |
|
230 |
image = gr.Image(type="pil", label="Upload Image (Optional)")
|
231 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
def respond(message, chat_history, image):
|
233 |
if not message and image is None:
|
234 |
return chat_history
|
@@ -241,6 +268,9 @@ def create_demo():
|
|
241 |
model.clear_history()
|
242 |
return None, None
|
243 |
|
|
|
|
|
|
|
244 |
submit.click(
|
245 |
respond,
|
246 |
[msg, chatbot, image],
|
@@ -259,6 +289,12 @@ def create_demo():
|
|
259 |
[msg, chatbot],
|
260 |
)
|
261 |
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
return demo
|
263 |
except Exception as e:
|
264 |
logging.error(f"Error creating demo: {str(e)}")
|
|
|
28 |
logging.error(f"Failed to load CLIP processor: {str(e)}")
|
29 |
self.processor = None
|
30 |
|
31 |
+
# Increase history length to retain more context
|
32 |
self.history = []
|
33 |
self.model = None
|
34 |
self.clip = None
|
|
|
37 |
def ensure_models_loaded(self):
|
38 |
"""Ensure models are loaded in GPU context"""
|
39 |
if self.model is None:
|
40 |
+
# Improved quantization config for better quality
|
41 |
from transformers import BitsAndBytesConfig
|
42 |
quantization_config = BitsAndBytesConfig(
|
43 |
+
load_in_8bit=True, # Changed from 4-bit to 8-bit for better quality
|
44 |
+
bnb_8bit_compute_dtype=torch.float16,
|
45 |
+
bnb_8bit_use_double_quant=False
|
|
|
46 |
)
|
47 |
|
48 |
try:
|
|
|
116 |
message = "Note: Image processing is not available - continuing with text only.\n" + message
|
117 |
|
118 |
prompt = f"human: {'<image>' if has_image else ''}\n{message}\ngpt:"
|
119 |
+
|
120 |
+
# Include more history for better context (previous 5 turns instead of 3)
|
121 |
context = ""
|
122 |
+
for turn in self.history[-5:]:
|
123 |
context += f"human: {turn[0]}\ngpt: {turn[1]}\n"
|
124 |
|
125 |
full_prompt = context + prompt
|
126 |
+
|
127 |
+
# Increased context window
|
128 |
inputs = self.tokenizer(
|
129 |
full_prompt,
|
130 |
return_tensors="pt",
|
131 |
padding=True,
|
132 |
truncation=True,
|
133 |
+
max_length=1024 # Increased from 512
|
134 |
)
|
135 |
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
136 |
|
|
|
138 |
inputs["image_features"] = image_features
|
139 |
|
140 |
with torch.no_grad():
|
141 |
+
# More conservative generation settings to reduce hallucinations
|
142 |
outputs = self.model.generate(
|
143 |
**inputs,
|
144 |
max_new_tokens=256,
|
145 |
min_length=20,
|
146 |
+
temperature=0.3, # Reduced from 0.7 for more deterministic output
|
147 |
do_sample=True,
|
148 |
+
top_p=0.92,
|
149 |
+
top_k=50,
|
150 |
+
repetition_penalty=1.2, # Adjusted for more natural responses
|
151 |
no_repeat_ngram_size=3,
|
152 |
use_cache=True,
|
153 |
pad_token_id=self.tokenizer.pad_token_id,
|
|
|
155 |
)
|
156 |
else:
|
157 |
prompt = f"human: {message}\ngpt:"
|
158 |
+
# Include more history
|
159 |
context = ""
|
160 |
+
for turn in self.history[-5:]:
|
161 |
context += f"human: {turn[0]}\ngpt: {turn[1]}\n"
|
162 |
|
163 |
full_prompt = context + prompt
|
164 |
+
|
165 |
+
# Increased context window
|
166 |
inputs = self.tokenizer(
|
167 |
full_prompt,
|
168 |
return_tensors="pt",
|
169 |
padding=True,
|
170 |
truncation=True,
|
171 |
+
max_length=1024 # Increased from 512
|
172 |
)
|
173 |
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
174 |
|
175 |
with torch.no_grad():
|
176 |
+
# More conservative generation settings
|
177 |
outputs = self.model.generate(
|
178 |
**inputs,
|
179 |
+
max_new_tokens=200, # Slightly increased from 150
|
180 |
min_length=20,
|
181 |
+
temperature=0.3, # Reduced from 0.6
|
182 |
do_sample=True,
|
183 |
+
top_p=0.92,
|
184 |
+
top_k=50,
|
185 |
+
repetition_penalty=1.2,
|
186 |
no_repeat_ngram_size=4,
|
187 |
use_cache=True,
|
188 |
pad_token_id=self.tokenizer.pad_token_id,
|
|
|
211 |
self.history = []
|
212 |
return None
|
213 |
|
214 |
+
# Add new function to control generation parameters
|
215 |
+
def update_generation_params(self, temperature=0.3, top_p=0.92, top_k=50, repetition_penalty=1.2):
|
216 |
+
"""Update generation parameters to control hallucination tendency"""
|
217 |
+
self.temperature = temperature
|
218 |
+
self.top_p = top_p
|
219 |
+
self.top_k = top_k
|
220 |
+
self.repetition_penalty = repetition_penalty
|
221 |
+
return f"Generation parameters updated: temp={temperature}, top_p={top_p}, top_k={top_k}, rep_penalty={repetition_penalty}"
|
222 |
+
|
223 |
def create_demo():
|
224 |
try:
|
225 |
model = LLaVAPhiModel()
|
|
|
227 |
with gr.Blocks(css="footer {visibility: hidden}") as demo:
|
228 |
gr.Markdown(
|
229 |
"""
|
230 |
+
# LLaVA-Phi Demo (Optimized for Accuracy)
|
231 |
Chat with a vision-language model that can understand both text and images.
|
232 |
"""
|
233 |
)
|
|
|
247 |
|
248 |
image = gr.Image(type="pil", label="Upload Image (Optional)")
|
249 |
|
250 |
+
# Add generation parameter controls
|
251 |
+
with gr.Accordion("Advanced Settings", open=False):
|
252 |
+
gr.Markdown("Adjust these parameters to control hallucination tendency")
|
253 |
+
temp_slider = gr.Slider(0.1, 1.0, value=0.3, step=0.1, label="Temperature (lower = more factual)")
|
254 |
+
top_p_slider = gr.Slider(0.5, 1.0, value=0.92, step=0.01, label="Top-p (nucleus sampling)")
|
255 |
+
top_k_slider = gr.Slider(10, 100, value=50, step=5, label="Top-k")
|
256 |
+
rep_penalty_slider = gr.Slider(1.0, 2.0, value=1.2, step=0.1, label="Repetition Penalty")
|
257 |
+
update_params = gr.Button("Update Parameters")
|
258 |
+
|
259 |
def respond(message, chat_history, image):
|
260 |
if not message and image is None:
|
261 |
return chat_history
|
|
|
268 |
model.clear_history()
|
269 |
return None, None
|
270 |
|
271 |
+
def update_params_fn(temp, top_p, top_k, rep_penalty):
|
272 |
+
return model.update_generation_params(temp, top_p, top_k, rep_penalty)
|
273 |
+
|
274 |
submit.click(
|
275 |
respond,
|
276 |
[msg, chatbot, image],
|
|
|
289 |
[msg, chatbot],
|
290 |
)
|
291 |
|
292 |
+
update_params.click(
|
293 |
+
update_params_fn,
|
294 |
+
[temp_slider, top_p_slider, top_k_slider, rep_penalty_slider],
|
295 |
+
None
|
296 |
+
)
|
297 |
+
|
298 |
return demo
|
299 |
except Exception as e:
|
300 |
logging.error(f"Error creating demo: {str(e)}")
|