Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, AutoConfig, AutoModel
|
4 |
+
from PIL import Image
|
5 |
+
import logging
|
6 |
+
from transformers import BitsAndBytesConfig
|
7 |
+
|
8 |
+
# Setup logging
|
9 |
+
logging.basicConfig(level=logging.INFO)
|
10 |
+
|
11 |
+
class LLaVAPhiModel:
|
12 |
+
def __init__(self, model_id="sagar007/Lava_phi"):
|
13 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
logging.info(f"Using device: {self.device}")
|
15 |
+
|
16 |
+
# Initialize quantization config
|
17 |
+
quantization_config = BitsAndBytesConfig(
|
18 |
+
load_in_4bit=True,
|
19 |
+
bnb_4bit_compute_dtype=torch.float16,
|
20 |
+
bnb_4bit_use_double_quant=True,
|
21 |
+
bnb_4bit_quant_type="nf4"
|
22 |
+
)
|
23 |
+
|
24 |
+
try:
|
25 |
+
# Load model directly from Hugging Face Hub
|
26 |
+
logging.info(f"Loading model from {model_id}...")
|
27 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
28 |
+
model_id,
|
29 |
+
quantization_config=quantization_config,
|
30 |
+
device_map="auto",
|
31 |
+
torch_dtype=torch.bfloat16,
|
32 |
+
trust_remote_code=True
|
33 |
+
)
|
34 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
|
35 |
+
|
36 |
+
# Set up padding token
|
37 |
+
if self.tokenizer.pad_token is None:
|
38 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
39 |
+
self.model.config.pad_token_id = self.tokenizer.eos_token_id
|
40 |
+
|
41 |
+
# Load CLIP model and processor
|
42 |
+
logging.info("Loading CLIP model and processor...")
|
43 |
+
self.processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
44 |
+
self.clip = AutoModel.from_pretrained("openai/clip-vit-base-patch32").to(self.device)
|
45 |
+
|
46 |
+
# Store conversation history
|
47 |
+
self.history = []
|
48 |
+
|
49 |
+
except Exception as e:
|
50 |
+
logging.error(f"Error initializing model: {str(e)}")
|
51 |
+
raise
|
52 |
+
|
53 |
+
def process_image(self, image):
|
54 |
+
"""Process image through CLIP"""
|
55 |
+
with torch.no_grad():
|
56 |
+
image_inputs = self.processor(images=image, return_tensors="pt")
|
57 |
+
image_features = self.clip.get_image_features(
|
58 |
+
pixel_values=image_inputs.pixel_values.to(self.device)
|
59 |
+
)
|
60 |
+
return image_features
|
61 |
+
|
62 |
+
def generate_response(self, message, image=None):
|
63 |
+
try:
|
64 |
+
if image is not None:
|
65 |
+
# Get image features
|
66 |
+
image_features = self.process_image(image)
|
67 |
+
|
68 |
+
# Format prompt
|
69 |
+
prompt = f"human: <image>\n{message}\ngpt:"
|
70 |
+
|
71 |
+
# Add context from history
|
72 |
+
context = ""
|
73 |
+
for turn in self.history[-3:]:
|
74 |
+
context += f"human: {turn[0]}\ngpt: {turn[1]}\n"
|
75 |
+
|
76 |
+
full_prompt = context + prompt
|
77 |
+
|
78 |
+
# Prepare text inputs
|
79 |
+
inputs = self.tokenizer(
|
80 |
+
full_prompt,
|
81 |
+
return_tensors="pt",
|
82 |
+
padding=True,
|
83 |
+
truncation=True,
|
84 |
+
max_length=512
|
85 |
+
)
|
86 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
87 |
+
|
88 |
+
# Add image features to inputs
|
89 |
+
inputs["image_features"] = image_features
|
90 |
+
|
91 |
+
# Generate response
|
92 |
+
with torch.no_grad():
|
93 |
+
outputs = self.model.generate(
|
94 |
+
**inputs,
|
95 |
+
max_new_tokens=256,
|
96 |
+
min_length=20,
|
97 |
+
temperature=0.7,
|
98 |
+
do_sample=True,
|
99 |
+
top_p=0.9,
|
100 |
+
top_k=40,
|
101 |
+
repetition_penalty=1.5,
|
102 |
+
no_repeat_ngram_size=3,
|
103 |
+
use_cache=True,
|
104 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
105 |
+
eos_token_id=self.tokenizer.eos_token_id
|
106 |
+
)
|
107 |
+
else:
|
108 |
+
# Text-only response
|
109 |
+
prompt = f"human: {message}\ngpt:"
|
110 |
+
context = ""
|
111 |
+
for turn in self.history[-3:]:
|
112 |
+
context += f"human: {turn[0]}\ngpt: {turn[1]}\n"
|
113 |
+
|
114 |
+
full_prompt = context + prompt
|
115 |
+
inputs = self.tokenizer(
|
116 |
+
full_prompt,
|
117 |
+
return_tensors="pt",
|
118 |
+
padding=True,
|
119 |
+
truncation=True,
|
120 |
+
max_length=512
|
121 |
+
)
|
122 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
123 |
+
|
124 |
+
with torch.no_grad():
|
125 |
+
outputs = self.model.generate(
|
126 |
+
**inputs,
|
127 |
+
max_new_tokens=150,
|
128 |
+
min_length=20,
|
129 |
+
temperature=0.6,
|
130 |
+
do_sample=True,
|
131 |
+
top_p=0.85,
|
132 |
+
top_k=30,
|
133 |
+
repetition_penalty=1.8,
|
134 |
+
no_repeat_ngram_size=4,
|
135 |
+
use_cache=True,
|
136 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
137 |
+
eos_token_id=self.tokenizer.eos_token_id
|
138 |
+
)
|
139 |
+
|
140 |
+
# Decode response
|
141 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
142 |
+
|
143 |
+
# Clean up response
|
144 |
+
if "gpt:" in response:
|
145 |
+
response = response.split("gpt:")[-1].strip()
|
146 |
+
if "human:" in response:
|
147 |
+
response = response.split("human:")[0].strip()
|
148 |
+
if "<image>" in response:
|
149 |
+
response = response.replace("<image>", "").strip()
|
150 |
+
|
151 |
+
# Update history
|
152 |
+
self.history.append((message, response))
|
153 |
+
|
154 |
+
return response
|
155 |
+
|
156 |
+
except Exception as e:
|
157 |
+
logging.error(f"Error generating response: {str(e)}")
|
158 |
+
logging.error(f"Full traceback:", exc_info=True)
|
159 |
+
return f"Error: {str(e)}"
|
160 |
+
|
161 |
+
def clear_history(self):
|
162 |
+
self.history = []
|
163 |
+
return None
|
164 |
+
|
165 |
+
def create_demo():
|
166 |
+
# Initialize model
|
167 |
+
model = LLaVAPhiModel()
|
168 |
+
|
169 |
+
with gr.Blocks(css="footer {visibility: hidden}") as demo:
|
170 |
+
gr.Markdown(
|
171 |
+
"""
|
172 |
+
# LLaVA-Phi Demo
|
173 |
+
Chat with a vision-language model that can understand both text and images.
|
174 |
+
"""
|
175 |
+
)
|
176 |
+
|
177 |
+
chatbot = gr.Chatbot(height=400)
|
178 |
+
with gr.Row():
|
179 |
+
with gr.Column(scale=0.7):
|
180 |
+
msg = gr.Textbox(
|
181 |
+
show_label=False,
|
182 |
+
placeholder="Enter text and/or upload an image",
|
183 |
+
container=False
|
184 |
+
)
|
185 |
+
with gr.Column(scale=0.15, min_width=0):
|
186 |
+
clear = gr.Button("Clear")
|
187 |
+
with gr.Column(scale=0.15, min_width=0):
|
188 |
+
submit = gr.Button("Submit", variant="primary")
|
189 |
+
|
190 |
+
image = gr.Image(type="pil", label="Upload Image (Optional)")
|
191 |
+
|
192 |
+
def respond(message, chat_history, image):
|
193 |
+
if not message and image is None:
|
194 |
+
return chat_history
|
195 |
+
|
196 |
+
response = model.generate_response(message, image)
|
197 |
+
chat_history.append((message, response))
|
198 |
+
return "", chat_history
|
199 |
+
|
200 |
+
def clear_chat():
|
201 |
+
model.clear_history()
|
202 |
+
return None, None
|
203 |
+
|
204 |
+
submit.click(
|
205 |
+
respond,
|
206 |
+
[msg, chatbot, image],
|
207 |
+
[msg, chatbot],
|
208 |
+
)
|
209 |
+
|
210 |
+
clear.click(
|
211 |
+
clear_chat,
|
212 |
+
None,
|
213 |
+
[chatbot, image],
|
214 |
+
)
|
215 |
+
|
216 |
+
msg.submit(
|
217 |
+
respond,
|
218 |
+
[msg, chatbot, image],
|
219 |
+
[msg, chatbot],
|
220 |
+
)
|
221 |
+
|
222 |
+
return demo
|
223 |
+
|
224 |
+
if __name__ == "__main__":
|
225 |
+
demo = create_demo()
|
226 |
+
demo.launch(
|
227 |
+
server_name="0.0.0.0",
|
228 |
+
server_port=7860,
|
229 |
+
share=True
|
230 |
+
)
|