Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, TextIteratorStreamer | |
import gradio as gr | |
from threading import Thread | |
from PIL import Image | |
# Constants | |
TITLE = "<h1><center>Phi 3.5 Multimodal (Text + Vision)</center></h1>" | |
DESCRIPTION = "# Phi-3.5 Multimodal Demo (Text + Vision)" | |
# Model configurations | |
TEXT_MODEL_ID = "microsoft/Phi-3.5-mini-instruct" | |
VISION_MODEL_ID = "microsoft/Phi-3.5-vision-instruct" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Using device: {device}") | |
# Load models and tokenizers | |
text_tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_ID) | |
text_model = AutoModelForCausalLM.from_pretrained( | |
TEXT_MODEL_ID, | |
torch_dtype=torch.float16 if device == "cuda" else torch.float32, | |
device_map="auto", | |
low_cpu_mem_usage=True | |
) | |
vision_model = AutoModelForCausalLM.from_pretrained( | |
VISION_MODEL_ID, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 if device == "cuda" else torch.float32, | |
attn_implementation="flash_attention_2" if device == "cuda" else None, | |
low_cpu_mem_usage=True | |
).to(device).eval() | |
vision_processor = AutoProcessor.from_pretrained(VISION_MODEL_ID, trust_remote_code=True) | |
# Helper functions | |
def stream_text_chat(message, history, system_prompt, temperature=0.8, max_new_tokens=1024, top_p=1.0, top_k=20): | |
conversation = [{"role": "system", "content": system_prompt}] | |
for prompt, answer in history: | |
conversation.extend([ | |
{"role": "user", "content": prompt}, | |
{"role": "assistant", "content": answer}, | |
]) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = text_tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(device) | |
streamer = TextIteratorStreamer(text_tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
max_new_tokens=max_new_tokens, | |
do_sample=temperature > 0, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
eos_token_id=[128001, 128008, 128009], | |
streamer=streamer, | |
) | |
with torch.no_grad(): | |
thread = Thread(target=text_model.generate, kwargs=generate_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
yield buffer | |
def process_vision_query(image, text_input): | |
prompt = f"<|user|>\n<|image_1|>\n{text_input}<|end|>\n<|assistant|>\n" | |
image = Image.fromarray(image).convert("RGB") | |
inputs = vision_processor(prompt, image, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
generate_ids = vision_model.generate( | |
**inputs, | |
max_new_tokens=1000, | |
eos_token_id=vision_processor.tokenizer.eos_token_id | |
) | |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:] | |
response = vision_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
return response | |
# Gradio interface | |
with gr.Blocks() as demo: | |
gr.HTML(TITLE) | |
gr.Markdown(DESCRIPTION) | |
with gr.Tab("Text Model (Phi-3.5-mini)"): | |
chatbot = gr.Chatbot(height=600) | |
gr.ChatInterface( | |
fn=stream_text_chat, | |
chatbot=chatbot, | |
additional_inputs=[ | |
gr.Textbox(value="You are a helpful assistant", label="System Prompt"), | |
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.8, label="Temperature"), | |
gr.Slider(minimum=128, maximum=8192, step=1, value=1024, label="Max new tokens"), | |
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p"), | |
gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_k"), | |
], | |
) | |
with gr.Tab("Vision Model (Phi-3.5-vision)"): | |
with gr.Row(): | |
with gr.Column(): | |
vision_input_img = gr.Image(label="Input Picture") | |
vision_text_input = gr.Textbox(label="Question") | |
vision_submit_btn = gr.Button(value="Submit") | |
with gr.Column(): | |
vision_output_text = gr.Textbox(label="Output Text") | |
vision_submit_btn.click(process_vision_query, [vision_input_img, vision_text_input], [vision_output_text]) | |
if __name__ == "__main__": | |
demo.launch() |