sagar007 commited on
Commit
57b203d
·
verified ·
1 Parent(s): b634609

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -96
app.py CHANGED
@@ -5,16 +5,14 @@ import gradio as gr
5
  from threading import Thread
6
  from PIL import Image
7
  import subprocess
8
- import spaces
9
- from parler_tts import ParlerTTSForConditionalGeneration
10
- import soundfile as sf
11
 
12
  # Install flash-attention
13
  subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
14
 
15
  # Constants
16
- TITLE = "<h1><center>Phi 3.5 Multimodal (Text + Vision + Speech)</center></h1>"
17
- DESCRIPTION = "# Phi-3.5 Multimodal Demo (Text + Vision + Speech)"
18
 
19
  # Model configurations
20
  TEXT_MODEL_ID = "microsoft/Phi-3.5-mini-instruct"
@@ -48,11 +46,6 @@ vision_model = AutoModelForCausalLM.from_pretrained(
48
 
49
  vision_processor = AutoProcessor.from_pretrained(VISION_MODEL_ID, trust_remote_code=True)
50
 
51
- # Load Parler-TTS model
52
- tts_device = "cuda:0" if torch.cuda.is_available() else "cpu"
53
- tts_model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-large-v1").to(tts_device)
54
- tts_tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-large-v1")
55
-
56
  # Helper functions
57
  @spaces.GPU
58
  def stream_text_chat(message, history, system_prompt, temperature=0.8, max_new_tokens=1024, top_p=1.0, top_k=20):
@@ -85,64 +78,24 @@ def stream_text_chat(message, history, system_prompt, temperature=0.8, max_new_t
85
  buffer = ""
86
  for new_text in streamer:
87
  buffer += new_text
88
- yield history + [[message, buffer]], None # Yield None for audio initially
89
-
90
- # Generate speech for the final response
91
- audio_path = generate_speech(buffer, "A clear and concise voice reads out the response.")
92
- yield history + [[message, buffer]], audio_path
93
 
94
- @spaces.GPU
95
- def process_vision_query(image, text_input, generate_speech=True):
96
  prompt = f"<|user|>\n<|image_1|>\n{text_input}<|end|>\n<|assistant|>\n"
 
 
97
 
98
- # Check if image is already a PIL Image
99
- if isinstance(image, Image.Image):
100
- pil_image = image
101
- elif isinstance(image, np.ndarray):
102
- pil_image = Image.fromarray(image).convert("RGB")
103
- else:
104
- raise ValueError("Unsupported image type. Expected PIL Image or numpy array.")
105
-
106
- inputs = vision_processor(prompt, pil_image, return_tensors="pt").to(device)
107
-
108
- try:
109
- with torch.no_grad():
110
- generate_ids = vision_model.generate(
111
- **inputs,
112
- max_new_tokens=1000,
113
- eos_token_id=vision_processor.tokenizer.eos_token_id
114
- )
115
-
116
- generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
117
- response = vision_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
118
-
119
- if generate_speech:
120
- audio_path = generate_speech_from_text(response)
121
- return response, audio_path
122
- else:
123
- return response, None
124
- except RuntimeError as e:
125
- if "CUDA out of memory" in str(e):
126
- error_message = "Error: GPU out of memory. Try processing a smaller image or freeing up GPU resources."
127
- return error_message, None
128
- else:
129
- raise e
130
-
131
-
132
- def generate_speech_from_text(text, description="A clear voice reads out the response."):
133
- input_ids = tts_tokenizer(description, return_tensors="pt").input_ids.to(tts_device)
134
- prompt_input_ids = tts_tokenizer(text, return_tensors="pt").input_ids.to(tts_device)
135
-
136
  with torch.no_grad():
137
- generation = tts_model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
138
-
139
- audio_arr = generation.cpu().numpy().squeeze()
140
-
141
- output_path = f"output_audio_{hash(text)}.wav"
142
- sf.write(output_path, audio_arr, tts_model.config.sampling_rate)
143
 
144
- return output_path
145
-
 
146
 
147
  # Custom CSS
148
  custom_css = """
@@ -165,7 +118,7 @@ footer { text-align: center; margin-top: 2rem; color: #64748b;}
165
  custom_header = """
166
  <div id="custom-header">
167
  <h1><span class="blue">Phi 3.5</span> <span class="pink">Multimodal Assistant</span></h1>
168
- <h2>Text, Vision, and Speech AI at Your Service</h2>
169
  </div>
170
  """
171
 
@@ -181,8 +134,8 @@ custom_suggestions = """
181
  <p>Analyze Images with Vision Model</p>
182
  </div>
183
  <div class="suggestion">
184
- <span class="suggestion-icon">🔊</span>
185
- <p>Generate Speech with Parler-TTS</p>
186
  </div>
187
  <div class="suggestion">
188
  <span class="suggestion-icon">🔍</span>
@@ -216,45 +169,22 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Base().set(
216
 
217
  submit_btn = gr.Button("Submit", variant="primary")
218
  clear_btn = gr.Button("Clear Chat", variant="secondary")
219
- audio_output = gr.Audio(label="AI Response Audio")
220
 
221
- submit_btn.click(stream_text_chat,
222
- inputs=[msg, chatbot, system_prompt, temperature, max_new_tokens, top_p, top_k],
223
- outputs=[chatbot, audio_output])
224
- clear_btn.click(lambda: (None, None), None, [chatbot, audio_output], queue=False)
225
-
226
- with gr.Tab("Vision Model with TTS (Phi-3.5-vision)"):
227
  with gr.Row():
228
-
229
  with gr.Column(scale=1):
230
-
231
  vision_input_img = gr.Image(label="Upload an Image", type="pil")
232
  vision_text_input = gr.Textbox(label="Ask a question about the image", placeholder="What do you see in this image?")
233
- vision_submit_btn = gr.Button("Analyze Image and Generate Speech", variant="primary")
234
  with gr.Column(scale=1):
235
  vision_output_text = gr.Textbox(label="AI Analysis", lines=10)
236
- vision_output_audio = gr.Audio(label="Generated Speech")
237
-
238
- vision_submit_btn.click(process_vision_query,
239
- inputs=[vision_input_img, vision_text_input],
240
- outputs=[vision_output_text, vision_output_audio])
241
-
242
-
243
-
244
-
245
- with gr.Tab("Text-to-Speech (Parler-TTS)"):
246
- with gr.Row():
247
-
248
- with gr.Column(scale=1):
249
- tts_prompt = gr.Textbox(label="Text to Speak", placeholder="Enter the text you want to convert to speech...")
250
- tts_description = gr.Textbox(label="Voice Description", value="A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up.", lines=3)
251
- tts_submit_btn = gr.Button("Generate Speech", variant="primary")
252
- with gr.Column(scale=1):
253
- tts_output_audio = gr.Audio(label="Generated Speech")
254
 
255
- tts_submit_btn.click(generate_speech, inputs=[tts_prompt, tts_description], outputs=[tts_output_audio])
256
 
257
- gr.HTML("<footer>Powered by Phi 3.5 Multimodal AI and Parler-TTS</footer>")
258
 
259
  if __name__ == "__main__":
260
  demo.launch()
 
5
  from threading import Thread
6
  from PIL import Image
7
  import subprocess
8
+ import spaces # Add this import
 
 
9
 
10
  # Install flash-attention
11
  subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
12
 
13
  # Constants
14
+ TITLE = "<h1><center>Phi 3.5 Multimodal (Text + Vision)</center></h1>"
15
+ DESCRIPTION = "# Phi-3.5 Multimodal Demo (Text + Vision)"
16
 
17
  # Model configurations
18
  TEXT_MODEL_ID = "microsoft/Phi-3.5-mini-instruct"
 
46
 
47
  vision_processor = AutoProcessor.from_pretrained(VISION_MODEL_ID, trust_remote_code=True)
48
 
 
 
 
 
 
49
  # Helper functions
50
  @spaces.GPU
51
  def stream_text_chat(message, history, system_prompt, temperature=0.8, max_new_tokens=1024, top_p=1.0, top_k=20):
 
78
  buffer = ""
79
  for new_text in streamer:
80
  buffer += new_text
81
+ yield history + [[message, buffer]]
 
 
 
 
82
 
83
+ @spaces.GPU # Add this decorator
84
+ def process_vision_query(image, text_input):
85
  prompt = f"<|user|>\n<|image_1|>\n{text_input}<|end|>\n<|assistant|>\n"
86
+ image = Image.fromarray(image).convert("RGB")
87
+ inputs = vision_processor(prompt, image, return_tensors="pt").to(device)
88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
  with torch.no_grad():
90
+ generate_ids = vision_model.generate(
91
+ **inputs,
92
+ max_new_tokens=1000,
93
+ eos_token_id=vision_processor.tokenizer.eos_token_id
94
+ )
 
95
 
96
+ generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
97
+ response = vision_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
98
+ return response
99
 
100
  # Custom CSS
101
  custom_css = """
 
118
  custom_header = """
119
  <div id="custom-header">
120
  <h1><span class="blue">Phi 3.5</span> <span class="pink">Multimodal Assistant</span></h1>
121
+ <h2>Text and Vision AI at Your Service</h2>
122
  </div>
123
  """
124
 
 
134
  <p>Analyze Images with Vision Model</p>
135
  </div>
136
  <div class="suggestion">
137
+ <span class="suggestion-icon">🤖</span>
138
+ <p>Get AI-generated responses</p>
139
  </div>
140
  <div class="suggestion">
141
  <span class="suggestion-icon">🔍</span>
 
169
 
170
  submit_btn = gr.Button("Submit", variant="primary")
171
  clear_btn = gr.Button("Clear Chat", variant="secondary")
 
172
 
173
+ submit_btn.click(stream_text_chat, [msg, chatbot, system_prompt, temperature, max_new_tokens, top_p, top_k], [chatbot])
174
+ clear_btn.click(lambda: None, None, chatbot, queue=False)
175
+
176
+ with gr.Tab("Vision Model (Phi-3.5-vision)"):
 
 
177
  with gr.Row():
 
178
  with gr.Column(scale=1):
 
179
  vision_input_img = gr.Image(label="Upload an Image", type="pil")
180
  vision_text_input = gr.Textbox(label="Ask a question about the image", placeholder="What do you see in this image?")
181
+ vision_submit_btn = gr.Button("Analyze Image", variant="primary")
182
  with gr.Column(scale=1):
183
  vision_output_text = gr.Textbox(label="AI Analysis", lines=10)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184
 
185
+ vision_submit_btn.click(process_vision_query, [vision_input_img, vision_text_input], [vision_output_text])
186
 
187
+ gr.HTML("<footer>Powered by Phi 3.5 Multimodal AI</footer>")
188
 
189
  if __name__ == "__main__":
190
  demo.launch()