Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,122 +1,140 @@
|
|
1 |
-
import spaces
|
2 |
-
import gradio as gr
|
3 |
import torch
|
4 |
-
import
|
5 |
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration, AutoModelForCausalLM, AutoProcessor
|
6 |
from gtts import gTTS
|
7 |
-
|
|
|
|
|
8 |
import subprocess
|
9 |
-
|
|
|
10 |
|
11 |
# Install flash-attn
|
12 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
|
|
|
20 |
@spaces.GPU
|
21 |
def load_whisper():
|
22 |
try:
|
|
|
23 |
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
24 |
-
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
25 |
return processor, model
|
26 |
except Exception as e:
|
27 |
print(f"Error loading Whisper model: {e}")
|
28 |
return None, None
|
29 |
|
|
|
30 |
@spaces.GPU
|
31 |
-
def
|
32 |
-
|
33 |
-
model_id = "microsoft/Phi-3.5-vision-instruct"
|
34 |
-
model = AutoModelForCausalLM.from_pretrained(
|
35 |
-
model_id, trust_remote_code=True, torch_dtype=torch.float16
|
36 |
-
)
|
37 |
-
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, num_crops=16)
|
38 |
-
return model, processor
|
39 |
-
except Exception as e:
|
40 |
-
print(f"Error loading vision model: {e}")
|
41 |
-
return None, None
|
42 |
|
|
|
43 |
@spaces.GPU
|
44 |
-
def
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
return None
|
50 |
|
|
|
51 |
@spaces.GPU
|
52 |
-
def
|
53 |
-
|
|
|
|
|
54 |
try:
|
55 |
-
audio, sr = librosa.load(
|
56 |
-
input_features = whisper_processor(audio, sampling_rate=sr, return_tensors="pt").input_features
|
57 |
predicted_ids = whisper_model.generate(input_features)
|
58 |
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
59 |
return transcription
|
60 |
except Exception as e:
|
61 |
-
return f"Error processing audio: {str(e)}"
|
62 |
|
|
|
63 |
@spaces.GPU
|
64 |
-
def
|
65 |
try:
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
73 |
except Exception as e:
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
@spaces.GPU
|
77 |
def generate_response(transcription, sarvam_pipe):
|
|
|
|
|
|
|
78 |
try:
|
|
|
79 |
response = sarvam_pipe(transcription, max_length=100, num_return_sequences=1)[0]['generated_text']
|
80 |
return response
|
81 |
except Exception as e:
|
82 |
return f"Error generating response: {str(e)}"
|
83 |
|
84 |
-
|
|
|
85 |
try:
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
89 |
except Exception as e:
|
90 |
-
|
91 |
-
return None
|
92 |
|
93 |
@spaces.GPU
|
94 |
-
def
|
95 |
try:
|
|
|
96 |
whisper_processor, whisper_model = load_whisper()
|
97 |
-
vision_model, vision_processor = load_vision_model()
|
98 |
sarvam_pipe = load_sarvam()
|
|
|
99 |
|
100 |
if input_type == "audio" and audio_input is not None:
|
101 |
-
transcription =
|
102 |
elif input_type == "text" and text_input:
|
103 |
transcription = text_input
|
104 |
elif input_type == "image" and image_input is not None:
|
105 |
-
|
106 |
-
transcription = process_image(image_input, text_prompt, vision_model, vision_processor)
|
107 |
else:
|
108 |
-
return "Please provide either audio, text, or image input.",
|
109 |
|
110 |
response = generate_response(transcription, sarvam_pipe)
|
111 |
-
lang =
|
112 |
audio_response = text_to_speech(response, lang)
|
113 |
|
114 |
-
return
|
115 |
except Exception as e:
|
116 |
error_message = f"An error occurred: {str(e)}"
|
117 |
-
return error_message,
|
118 |
|
119 |
-
# Custom CSS
|
120 |
custom_css = """
|
121 |
body {
|
122 |
background-color: #0b0f19;
|
@@ -183,12 +201,12 @@ footer {
|
|
183 |
}
|
184 |
"""
|
185 |
|
186 |
-
# Custom HTML for the header
|
187 |
custom_header = """
|
188 |
<div id="custom-header">
|
189 |
<h1>
|
190 |
-
<span class="blue">
|
191 |
-
<span class="pink">
|
192 |
</h1>
|
193 |
<h2>How can I help you today?</h2>
|
194 |
</div>
|
@@ -206,7 +224,7 @@ custom_suggestions = """
|
|
206 |
<p>Type in any Indic language</p>
|
207 |
</div>
|
208 |
<div class="suggestion">
|
209 |
-
<span class="suggestion-icon"
|
210 |
<p>Upload an image for analysis</p>
|
211 |
</div>
|
212 |
<div class="suggestion">
|
@@ -220,7 +238,7 @@ custom_suggestions = """
|
|
220 |
</div>
|
221 |
"""
|
222 |
|
223 |
-
# Gradio interface
|
224 |
with gr.Blocks(css=custom_css, theme=gr.themes.Base().set(
|
225 |
body_background_fill="#0b0f19",
|
226 |
body_text_color="#e2e8f0",
|
@@ -235,25 +253,24 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Base().set(
|
|
235 |
|
236 |
with gr.Row():
|
237 |
with gr.Column(scale=1):
|
238 |
-
gr.Markdown("### Indic
|
239 |
|
240 |
input_type = gr.Radio(["audio", "text", "image"], label="Input Type", value="audio")
|
241 |
audio_input = gr.Audio(type="filepath", label="Speak (if audio input selected)")
|
242 |
-
text_input = gr.Textbox(label="Type your message or image
|
243 |
-
image_input = gr.Image(
|
244 |
|
245 |
submit_btn = gr.Button("Submit")
|
246 |
|
247 |
-
output_transcription = gr.Textbox(label="Transcription/Input")
|
248 |
output_response = gr.Textbox(label="Generated Response")
|
249 |
output_audio = gr.Audio(label="Audio Response")
|
250 |
|
251 |
submit_btn.click(
|
252 |
-
fn=
|
253 |
inputs=[input_type, audio_input, text_input, image_input],
|
254 |
-
outputs=[
|
255 |
)
|
256 |
-
gr.HTML("<footer>Powered by Indic Language AI
|
257 |
|
258 |
# Launch the app
|
259 |
iface.launch()
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
import librosa
|
3 |
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration, AutoModelForCausalLM, AutoProcessor
|
4 |
from gtts import gTTS
|
5 |
+
import gradio as gr
|
6 |
+
import spaces
|
7 |
+
from PIL import Image
|
8 |
import subprocess
|
9 |
+
|
10 |
+
print("Using GPU for operations when available")
|
11 |
|
12 |
# Install flash-attn
|
13 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
14 |
|
15 |
+
# Function to safely load pipeline within a GPU-decorated function
|
16 |
+
@spaces.GPU
|
17 |
+
def load_pipeline(model_name, **kwargs):
|
18 |
+
try:
|
19 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
20 |
+
return pipeline(model=model_name, device=device, **kwargs)
|
21 |
+
except Exception as e:
|
22 |
+
print(f"Error loading {model_name} pipeline: {e}")
|
23 |
+
return None
|
24 |
|
25 |
+
# Load Whisper model for speech recognition within a GPU-decorated function
|
26 |
@spaces.GPU
|
27 |
def load_whisper():
|
28 |
try:
|
29 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
30 |
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
31 |
+
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to(device)
|
32 |
return processor, model
|
33 |
except Exception as e:
|
34 |
print(f"Error loading Whisper model: {e}")
|
35 |
return None, None
|
36 |
|
37 |
+
# Load sarvam-2b for text generation within a GPU-decorated function
|
38 |
@spaces.GPU
|
39 |
+
def load_sarvam():
|
40 |
+
return load_pipeline('sarvamai/sarvam-2b-v0.5')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
# Load vision model
|
43 |
@spaces.GPU
|
44 |
+
def load_vision_model():
|
45 |
+
model_id = "microsoft/Phi-3.5-vision-instruct"
|
46 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True, torch_dtype="auto", attn_implementation="flash_attention_2").cuda().eval()
|
47 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
48 |
+
return model, processor
|
|
|
49 |
|
50 |
+
# Process audio input within a GPU-decorated function
|
51 |
@spaces.GPU
|
52 |
+
def process_audio_input(audio, whisper_processor, whisper_model):
|
53 |
+
if whisper_processor is None or whisper_model is None:
|
54 |
+
return "Error: Speech recognition model is not available. Please type your message instead."
|
55 |
+
|
56 |
try:
|
57 |
+
audio, sr = librosa.load(audio, sr=16000)
|
58 |
+
input_features = whisper_processor(audio, sampling_rate=sr, return_tensors="pt").input_features.to(whisper_model.device)
|
59 |
predicted_ids = whisper_model.generate(input_features)
|
60 |
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
61 |
return transcription
|
62 |
except Exception as e:
|
63 |
+
return f"Error processing audio: {str(e)}. Please type your message instead."
|
64 |
|
65 |
+
# Generate response within a GPU-decorated function
|
66 |
@spaces.GPU
|
67 |
+
def text_to_speech(text, lang='hi'):
|
68 |
try:
|
69 |
+
# Use a better TTS engine for Indic languages
|
70 |
+
if lang in ['hi', 'bn', 'gu', 'kn', 'ml', 'mr', 'or', 'pa', 'ta', 'te']:
|
71 |
+
tts = gTTS(text=text, lang=lang, tld='co.in') # Use Indian TLD
|
72 |
+
else:
|
73 |
+
tts = gTTS(text=text, lang=lang)
|
74 |
+
|
75 |
+
tts.save("response.mp3")
|
76 |
+
return "response.mp3"
|
77 |
except Exception as e:
|
78 |
+
print(f"Error in text-to-speech: {str(e)}")
|
79 |
+
return None
|
80 |
+
|
81 |
+
# Detect language (placeholder function, replace with actual implementation)
|
82 |
+
def detect_language(text):
|
83 |
+
# Implement language detection logic here
|
84 |
+
return 'en' # Default to English for now
|
85 |
|
86 |
@spaces.GPU
|
87 |
def generate_response(transcription, sarvam_pipe):
|
88 |
+
if sarvam_pipe is None:
|
89 |
+
return "Error: Text generation model is not available."
|
90 |
+
|
91 |
try:
|
92 |
+
# Generate response using the sarvam-2b model
|
93 |
response = sarvam_pipe(transcription, max_length=100, num_return_sequences=1)[0]['generated_text']
|
94 |
return response
|
95 |
except Exception as e:
|
96 |
return f"Error generating response: {str(e)}"
|
97 |
|
98 |
+
@spaces.GPU
|
99 |
+
def process_image(image, text_input, vision_model, vision_processor):
|
100 |
try:
|
101 |
+
prompt = f"<|user|>\n<|image_1|>\n{text_input}<|end|>\n<|assistant|>\n"
|
102 |
+
image = Image.fromarray(image).convert("RGB")
|
103 |
+
inputs = vision_processor(prompt, image, return_tensors="pt").to("cuda:0")
|
104 |
+
generate_ids = vision_model.generate(**inputs, max_new_tokens=1000, eos_token_id=vision_processor.tokenizer.eos_token_id)
|
105 |
+
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
106 |
+
response = vision_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
107 |
+
return response
|
108 |
except Exception as e:
|
109 |
+
return f"Error processing image: {str(e)}"
|
|
|
110 |
|
111 |
@spaces.GPU
|
112 |
+
def multimodal_assistant(input_type, audio_input, text_input, image_input):
|
113 |
try:
|
114 |
+
# Load models within the GPU-decorated function
|
115 |
whisper_processor, whisper_model = load_whisper()
|
|
|
116 |
sarvam_pipe = load_sarvam()
|
117 |
+
vision_model, vision_processor = load_vision_model()
|
118 |
|
119 |
if input_type == "audio" and audio_input is not None:
|
120 |
+
transcription = process_audio_input(audio_input, whisper_processor, whisper_model)
|
121 |
elif input_type == "text" and text_input:
|
122 |
transcription = text_input
|
123 |
elif input_type == "image" and image_input is not None:
|
124 |
+
return process_image(image_input, text_input, vision_model, vision_processor), None
|
|
|
125 |
else:
|
126 |
+
return "Please provide either audio, text, or image input.", None
|
127 |
|
128 |
response = generate_response(transcription, sarvam_pipe)
|
129 |
+
lang = detect_language(response)
|
130 |
audio_response = text_to_speech(response, lang)
|
131 |
|
132 |
+
return response, audio_response
|
133 |
except Exception as e:
|
134 |
error_message = f"An error occurred: {str(e)}"
|
135 |
+
return error_message, None
|
136 |
|
137 |
+
# Custom CSS (you can keep your existing custom CSS here)
|
138 |
custom_css = """
|
139 |
body {
|
140 |
background-color: #0b0f19;
|
|
|
201 |
}
|
202 |
"""
|
203 |
|
204 |
+
# Custom HTML for the header (you can keep your existing custom header here)
|
205 |
custom_header = """
|
206 |
<div id="custom-header">
|
207 |
<h1>
|
208 |
+
<span class="blue">Multimodal</span>
|
209 |
+
<span class="pink">Indic Assistant</span>
|
210 |
</h1>
|
211 |
<h2>How can I help you today?</h2>
|
212 |
</div>
|
|
|
224 |
<p>Type in any Indic language</p>
|
225 |
</div>
|
226 |
<div class="suggestion">
|
227 |
+
<span class="suggestion-icon">📷</span>
|
228 |
<p>Upload an image for analysis</p>
|
229 |
</div>
|
230 |
<div class="suggestion">
|
|
|
238 |
</div>
|
239 |
"""
|
240 |
|
241 |
+
# Create Gradio interface
|
242 |
with gr.Blocks(css=custom_css, theme=gr.themes.Base().set(
|
243 |
body_background_fill="#0b0f19",
|
244 |
body_text_color="#e2e8f0",
|
|
|
253 |
|
254 |
with gr.Row():
|
255 |
with gr.Column(scale=1):
|
256 |
+
gr.Markdown("### Multimodal Indic Assistant")
|
257 |
|
258 |
input_type = gr.Radio(["audio", "text", "image"], label="Input Type", value="audio")
|
259 |
audio_input = gr.Audio(type="filepath", label="Speak (if audio input selected)")
|
260 |
+
text_input = gr.Textbox(label="Type your message or image question")
|
261 |
+
image_input = gr.Image(label="Upload an image (if image input selected)")
|
262 |
|
263 |
submit_btn = gr.Button("Submit")
|
264 |
|
|
|
265 |
output_response = gr.Textbox(label="Generated Response")
|
266 |
output_audio = gr.Audio(label="Audio Response")
|
267 |
|
268 |
submit_btn.click(
|
269 |
+
fn=multimodal_assistant,
|
270 |
inputs=[input_type, audio_input, text_input, image_input],
|
271 |
+
outputs=[output_response, output_audio]
|
272 |
)
|
273 |
+
gr.HTML("<footer>Powered by Multimodal Indic Language AI</footer>")
|
274 |
|
275 |
# Launch the app
|
276 |
iface.launch()
|