Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import librosa
|
3 |
+
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration, AutoModelForCausalLM, AutoProcessor
|
4 |
+
from gtts import gTTS
|
5 |
+
import gradio as gr
|
6 |
+
import spaces
|
7 |
+
from PIL import Image
|
8 |
+
import os
|
9 |
+
import io
|
10 |
+
import subprocess
|
11 |
+
from langdetect import detect
|
12 |
+
|
13 |
+
print("Using GPU for operations when available")
|
14 |
+
|
15 |
+
# Install flash-attn
|
16 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
17 |
+
|
18 |
+
# Function to safely load pipeline within a GPU-decorated function
|
19 |
+
@spaces.GPU
|
20 |
+
def load_pipeline(model_name, **kwargs):
|
21 |
+
try:
|
22 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
23 |
+
return pipeline(model=model_name, device=device, **kwargs)
|
24 |
+
except Exception as e:
|
25 |
+
print(f"Error loading {model_name} pipeline: {e}")
|
26 |
+
return None
|
27 |
+
|
28 |
+
# Load Whisper model for speech recognition within a GPU-decorated function
|
29 |
+
@spaces.GPU
|
30 |
+
def load_whisper():
|
31 |
+
try:
|
32 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
33 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
34 |
+
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to(device)
|
35 |
+
return processor, model
|
36 |
+
except Exception as e:
|
37 |
+
print(f"Error loading Whisper model: {e}")
|
38 |
+
return None, None
|
39 |
+
|
40 |
+
# Load sarvam-2b for text generation within a GPU-decorated function
|
41 |
+
@spaces.GPU
|
42 |
+
def load_sarvam():
|
43 |
+
return load_pipeline('sarvamai/sarvam-2b-v0.5')
|
44 |
+
|
45 |
+
# Load Phi-3.5-vision-instruct model
|
46 |
+
@spaces.GPU
|
47 |
+
def load_vision_model():
|
48 |
+
try:
|
49 |
+
model_id = "microsoft/Phi-3.5-vision-instruct"
|
50 |
+
model = AutoModelForCausalLM.from_pretrained(
|
51 |
+
model_id, trust_remote_code=True, torch_dtype=torch.float16, use_flash_attention_2=False
|
52 |
+
)
|
53 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, num_crops=16)
|
54 |
+
return model, processor
|
55 |
+
except Exception as e:
|
56 |
+
print(f"Error loading vision model: {e}")
|
57 |
+
return None, None
|
58 |
+
|
59 |
+
# Process audio input within a GPU-decorated function
|
60 |
+
@spaces.GPU
|
61 |
+
def process_audio_input(audio, whisper_processor, whisper_model):
|
62 |
+
if whisper_processor is None or whisper_model is None:
|
63 |
+
return "Error: Speech recognition model is not available. Please type your message instead."
|
64 |
+
|
65 |
+
try:
|
66 |
+
audio, sr = librosa.load(audio, sr=16000)
|
67 |
+
input_features = whisper_processor(audio, sampling_rate=sr, return_tensors="pt").input_features.to(whisper_model.device)
|
68 |
+
predicted_ids = whisper_model.generate(input_features)
|
69 |
+
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
70 |
+
return transcription
|
71 |
+
except Exception as e:
|
72 |
+
return f"Error processing audio: {str(e)}. Please type your message instead."
|
73 |
+
|
74 |
+
# Process image input
|
75 |
+
@spaces.GPU
|
76 |
+
def process_image_input(image, vision_model, vision_processor):
|
77 |
+
if vision_model is None or vision_processor is None:
|
78 |
+
return "Error: Vision model is not available."
|
79 |
+
|
80 |
+
try:
|
81 |
+
inputs = vision_processor(images=image, return_tensors="pt")
|
82 |
+
inputs = {k: v.to(vision_model.device) for k, v in inputs.items()}
|
83 |
+
|
84 |
+
with torch.no_grad():
|
85 |
+
outputs = vision_model.generate(**inputs, max_new_tokens=512, do_sample=True, top_k=50, top_p=0.95)
|
86 |
+
|
87 |
+
generated_text = vision_processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
88 |
+
return generated_text
|
89 |
+
except Exception as e:
|
90 |
+
return f"Error processing image: {str(e)}"
|
91 |
+
|
92 |
+
# Generate response within a GPU-decorated function
|
93 |
+
@spaces.GPU
|
94 |
+
def generate_response(transcription, sarvam_pipe):
|
95 |
+
if sarvam_pipe is None:
|
96 |
+
return "Error: Text generation model is not available."
|
97 |
+
|
98 |
+
try:
|
99 |
+
# Generate response using the sarvam-2b model
|
100 |
+
response = sarvam_pipe(transcription, max_length=100, num_return_sequences=1)[0]['generated_text']
|
101 |
+
return response
|
102 |
+
except Exception as e:
|
103 |
+
return f"Error generating response: {str(e)}"
|
104 |
+
|
105 |
+
# Text-to-speech function
|
106 |
+
def text_to_speech(text, lang='hi'):
|
107 |
+
try:
|
108 |
+
# Use a better TTS engine for Indic languages
|
109 |
+
if lang in ['hi', 'bn', 'gu', 'kn', 'ml', 'mr', 'or', 'pa', 'ta', 'te']:
|
110 |
+
# You might want to use a different TTS library here
|
111 |
+
# For example, you could use the Google Cloud Text-to-Speech API
|
112 |
+
# or a specialized Indic language TTS library
|
113 |
+
|
114 |
+
# This is a placeholder for a better Indic TTS solution
|
115 |
+
tts = gTTS(text=text, lang=lang, tld='co.in') # Use Indian TLD
|
116 |
+
else:
|
117 |
+
tts = gTTS(text=text, lang=lang)
|
118 |
+
|
119 |
+
tts.save("response.mp3")
|
120 |
+
return "response.mp3"
|
121 |
+
except Exception as e:
|
122 |
+
print(f"Error in text-to-speech: {str(e)}")
|
123 |
+
return None
|
124 |
+
|
125 |
+
# Improved language detection function
|
126 |
+
def detect_language(text):
|
127 |
+
lang_codes = {
|
128 |
+
'bn': 'Bengali', 'gu': 'Gujarati', 'hi': 'Hindi', 'kn': 'Kannada',
|
129 |
+
'ml': 'Malayalam', 'mr': 'Marathi', 'or': 'Oriya', 'pa': 'Punjabi',
|
130 |
+
'ta': 'Tamil', 'te': 'Telugu', 'en': 'English'
|
131 |
+
}
|
132 |
+
|
133 |
+
try:
|
134 |
+
detected_lang = detect(text)
|
135 |
+
return detected_lang if detected_lang in lang_codes else 'en'
|
136 |
+
except:
|
137 |
+
# Fallback to simple script-based detection
|
138 |
+
for code, lang in lang_codes.items():
|
139 |
+
if any(ord(char) >= 0x0900 and ord(char) <= 0x097F for char in text): # Devanagari script
|
140 |
+
return 'hi'
|
141 |
+
return 'en' # Default to English if no Indic script is detected
|
142 |
+
|
143 |
+
@spaces.GPU
|
144 |
+
def indic_vision_assistant(input_type, audio_input, text_input, image_input):
|
145 |
+
try:
|
146 |
+
# Load models within the GPU-decorated function
|
147 |
+
whisper_processor, whisper_model = load_whisper()
|
148 |
+
sarvam_pipe = load_sarvam()
|
149 |
+
vision_model, vision_processor = load_vision_model()
|
150 |
+
|
151 |
+
if input_type == "audio" and audio_input is not None:
|
152 |
+
transcription = process_audio_input(audio_input, whisper_processor, whisper_model)
|
153 |
+
elif input_type == "text" and text_input:
|
154 |
+
transcription = text_input
|
155 |
+
elif input_type == "image" and image_input is not None:
|
156 |
+
transcription = process_image_input(image_input, vision_model, vision_processor)
|
157 |
+
else:
|
158 |
+
return "Please provide either audio, text, or image input.", "No input provided.", None
|
159 |
+
|
160 |
+
response = generate_response(transcription, sarvam_pipe)
|
161 |
+
lang = detect_language(response)
|
162 |
+
audio_response = text_to_speech(response, lang)
|
163 |
+
|
164 |
+
return transcription, response, audio_response
|
165 |
+
except Exception as e:
|
166 |
+
error_message = f"An error occurred: {str(e)}"
|
167 |
+
return error_message, error_message, None
|
168 |
+
|
169 |
+
# Custom CSS
|
170 |
+
custom_css = """
|
171 |
+
body {
|
172 |
+
background-color: #0b0f19;
|
173 |
+
color: #e2e8f0;
|
174 |
+
font-family: 'Arial', sans-serif;
|
175 |
+
}
|
176 |
+
#custom-header {
|
177 |
+
text-align: center;
|
178 |
+
padding: 20px 0;
|
179 |
+
background-color: #1a202c;
|
180 |
+
margin-bottom: 20px;
|
181 |
+
border-radius: 10px;
|
182 |
+
}
|
183 |
+
#custom-header h1 {
|
184 |
+
font-size: 2.5rem;
|
185 |
+
margin-bottom: 0.5rem;
|
186 |
+
}
|
187 |
+
#custom-header h1 .blue {
|
188 |
+
color: #60a5fa;
|
189 |
+
}
|
190 |
+
#custom-header h1 .pink {
|
191 |
+
color: #f472b6;
|
192 |
+
}
|
193 |
+
#custom-header h2 {
|
194 |
+
font-size: 1.5rem;
|
195 |
+
color: #94a3b8;
|
196 |
+
}
|
197 |
+
.suggestions {
|
198 |
+
display: flex;
|
199 |
+
justify-content: center;
|
200 |
+
flex-wrap: wrap;
|
201 |
+
gap: 1rem;
|
202 |
+
margin: 20px 0;
|
203 |
+
}
|
204 |
+
.suggestion {
|
205 |
+
background-color: #1e293b;
|
206 |
+
border-radius: 0.5rem;
|
207 |
+
padding: 1rem;
|
208 |
+
display: flex;
|
209 |
+
align-items: center;
|
210 |
+
transition: transform 0.3s ease;
|
211 |
+
width: 200px;
|
212 |
+
}
|
213 |
+
.suggestion:hover {
|
214 |
+
transform: translateY(-5px);
|
215 |
+
}
|
216 |
+
.suggestion-icon {
|
217 |
+
font-size: 1.5rem;
|
218 |
+
margin-right: 1rem;
|
219 |
+
background-color: #2d3748;
|
220 |
+
padding: 0.5rem;
|
221 |
+
border-radius: 50%;
|
222 |
+
}
|
223 |
+
.gradio-container {
|
224 |
+
max-width: 100% !important;
|
225 |
+
}
|
226 |
+
#component-0, #component-1, #component-2 {
|
227 |
+
max-width: 100% !important;
|
228 |
+
}
|
229 |
+
footer {
|
230 |
+
text-align: center;
|
231 |
+
margin-top: 2rem;
|
232 |
+
color: #64748b;
|
233 |
+
}
|
234 |
+
"""
|
235 |
+
|
236 |
+
# Custom HTML for the header
|
237 |
+
custom_header = """
|
238 |
+
<div id="custom-header">
|
239 |
+
<h1>
|
240 |
+
<span class="blue">Hello,</span>
|
241 |
+
<span class="pink">User</span>
|
242 |
+
</h1>
|
243 |
+
<h2>How can I help you today?</h2>
|
244 |
+
</div>
|
245 |
+
"""
|
246 |
+
|
247 |
+
# Custom HTML for suggestions
|
248 |
+
custom_suggestions = """
|
249 |
+
<div class="suggestions">
|
250 |
+
<div class="suggestion">
|
251 |
+
<span class="suggestion-icon">🎤</span>
|
252 |
+
<p>Speak in any Indic language</p>
|
253 |
+
</div>
|
254 |
+
<div class="suggestion">
|
255 |
+
<span class="suggestion-icon">⌨️</span>
|
256 |
+
<p>Type in any Indic language</p>
|
257 |
+
</div>
|
258 |
+
<div class="suggestion">
|
259 |
+
<span class="suggestion-icon">🖼️</span>
|
260 |
+
<p>Upload an image for analysis</p>
|
261 |
+
</div>
|
262 |
+
<div class="suggestion">
|
263 |
+
<span class="suggestion-icon">🤖</span>
|
264 |
+
<p>Get AI-generated responses</p>
|
265 |
+
</div>
|
266 |
+
<div class="suggestion">
|
267 |
+
<span class="suggestion-icon">🔊</span>
|
268 |
+
<p>Listen to audio responses</p>
|
269 |
+
</div>
|
270 |
+
</div>
|
271 |
+
"""
|
272 |
+
|
273 |
+
# Create Gradio interface
|
274 |
+
with gr.Blocks(css=custom_css, theme=gr.themes.Base().set(
|
275 |
+
body_background_fill="#0b0f19",
|
276 |
+
body_text_color="#e2e8f0",
|
277 |
+
button_primary_background_fill="#3b82f6",
|
278 |
+
button_primary_background_fill_hover="#2563eb",
|
279 |
+
button_primary_text_color="white",
|
280 |
+
block_title_text_color="#94a3b8",
|
281 |
+
block_label_text_color="#94a3b8",
|
282 |
+
)) as iface:
|
283 |
+
gr.HTML(custom_header)
|
284 |
+
gr.HTML(custom_suggestions)
|
285 |
+
|
286 |
+
with gr.Row():
|
287 |
+
with gr.Column(scale=1):
|
288 |
+
gr.Markdown("### Indic Vision Assistant")
|
289 |
+
|
290 |
+
input_type = gr.Radio(["audio", "text", "image"], label="Input Type", value="audio")
|
291 |
+
audio_input = gr.Audio(type="filepath", label="Speak (if audio input selected)")
|
292 |
+
text_input = gr.Textbox(label="Type your message (if text input selected)")
|
293 |
+
image_input = gr.Image(type="pil", label="Upload an image (if image input selected)")
|
294 |
+
|
295 |
+
submit_btn = gr.Button("Submit")
|
296 |
+
|
297 |
+
output_transcription = gr.Textbox(label="Transcription/Input")
|
298 |
+
output_response = gr.Textbox(label="Generated Response")
|
299 |
+
output_audio = gr.Audio(label="Audio Response")
|
300 |
+
|
301 |
+
submit_btn.click(
|
302 |
+
fn=indic_vision_assistant,
|
303 |
+
inputs=[input_type, audio_input, text_input, image_input],
|
304 |
+
outputs=[output_transcription, output_response, output_audio]
|
305 |
+
)
|
306 |
+
gr.HTML("<footer>Powered by Indic Language AI with Vision Capabilities</footer>")
|
307 |
+
|
308 |
+
# Launch the app
|
309 |
+
iface.launch()
|