import os import torch from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, TextIteratorStreamer import gradio as gr from threading import Thread from PIL import Image # Constants TITLE = "

Phi 3.5 Multimodal (Text + Vision)

" DESCRIPTION = "# Phi-3.5 Multimodal Demo (Text + Vision)" # Model configurations TEXT_MODEL_ID = "microsoft/Phi-3.5-mini-instruct" VISION_MODEL_ID = "microsoft/Phi-3.5-vision-instruct" device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using device: {device}") # Load models and tokenizers text_tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_ID) text_model = AutoModelForCausalLM.from_pretrained( TEXT_MODEL_ID, torch_dtype=torch.float16 if device == "cuda" else torch.float32, device_map="auto", low_cpu_mem_usage=True ) vision_model = AutoModelForCausalLM.from_pretrained( VISION_MODEL_ID, trust_remote_code=True, torch_dtype=torch.float16 if device == "cuda" else torch.float32, attn_implementation="flash_attention_2" if device == "cuda" else None, low_cpu_mem_usage=True ).to(device).eval() vision_processor = AutoProcessor.from_pretrained(VISION_MODEL_ID, trust_remote_code=True) # Helper functions def stream_text_chat(message, history, system_prompt, temperature=0.8, max_new_tokens=1024, top_p=1.0, top_k=20): conversation = [{"role": "system", "content": system_prompt}] for prompt, answer in history: conversation.extend([ {"role": "user", "content": prompt}, {"role": "assistant", "content": answer}, ]) conversation.append({"role": "user", "content": message}) input_ids = text_tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(device) streamer = TextIteratorStreamer(text_tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids=input_ids, max_new_tokens=max_new_tokens, do_sample=temperature > 0, top_p=top_p, top_k=top_k, temperature=temperature, eos_token_id=[128001, 128008, 128009], streamer=streamer, ) with torch.no_grad(): thread = Thread(target=text_model.generate, kwargs=generate_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text yield buffer def process_vision_query(image, text_input): prompt = f"<|user|>\n<|image_1|>\n{text_input}<|end|>\n<|assistant|>\n" image = Image.fromarray(image).convert("RGB") inputs = vision_processor(prompt, image, return_tensors="pt").to(device) with torch.no_grad(): generate_ids = vision_model.generate( **inputs, max_new_tokens=1000, eos_token_id=vision_processor.tokenizer.eos_token_id ) generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:] response = vision_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] return response # Gradio interface with gr.Blocks() as demo: gr.HTML(TITLE) gr.Markdown(DESCRIPTION) with gr.Tab("Text Model (Phi-3.5-mini)"): chatbot = gr.Chatbot(height=600) gr.ChatInterface( fn=stream_text_chat, chatbot=chatbot, additional_inputs=[ gr.Textbox(value="You are a helpful assistant", label="System Prompt"), gr.Slider(minimum=0, maximum=1, step=0.1, value=0.8, label="Temperature"), gr.Slider(minimum=128, maximum=8192, step=1, value=1024, label="Max new tokens"), gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p"), gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_k"), ], ) with gr.Tab("Vision Model (Phi-3.5-vision)"): with gr.Row(): with gr.Column(): vision_input_img = gr.Image(label="Input Picture") vision_text_input = gr.Textbox(label="Question") vision_submit_btn = gr.Button(value="Submit") with gr.Column(): vision_output_text = gr.Textbox(label="Output Text") vision_submit_btn.click(process_vision_query, [vision_input_img, vision_text_input], [vision_output_text]) if __name__ == "__main__": demo.launch()