Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
from transformers import AutoProcessor, CLIPSegForImageSegmentation
|
6 |
+
|
7 |
+
# Load the CLIPSeg model and processor
|
8 |
+
processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
9 |
+
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
|
10 |
+
|
11 |
+
def segment_image(input_image, text_prompt):
|
12 |
+
# Preprocess the image
|
13 |
+
inputs = processor(text=[text_prompt], images=[input_image], padding="max_length", return_tensors="pt")
|
14 |
+
|
15 |
+
# Perform segmentation
|
16 |
+
with torch.no_grad():
|
17 |
+
outputs = model(**inputs)
|
18 |
+
|
19 |
+
# Get the predicted segmentation
|
20 |
+
preds = outputs.logits.squeeze().sigmoid()
|
21 |
+
|
22 |
+
# Convert the prediction to a PIL image
|
23 |
+
segmentation = (preds > 0.5).float()
|
24 |
+
segmentation_image = Image.fromarray((segmentation.numpy() * 255).astype(np.uint8))
|
25 |
+
|
26 |
+
return segmentation_image
|
27 |
+
|
28 |
+
# Create Gradio interface
|
29 |
+
iface = gr.Interface(
|
30 |
+
fn=segment_image,
|
31 |
+
inputs=[
|
32 |
+
gr.Image(type="pil", label="Input Image"),
|
33 |
+
gr.Textbox(label="Text Prompt", placeholder="Enter a description of what to segment...")
|
34 |
+
],
|
35 |
+
outputs=gr.Image(type="pil", label="Segmentation Result"),
|
36 |
+
title="CLIPSeg Image Segmentation",
|
37 |
+
description="Upload an image and provide a text prompt to segment objects.",
|
38 |
+
examples=[
|
39 |
+
["path/to/example_image1.jpg", "car"],
|
40 |
+
["path/to/example_image2.jpg", "person"],
|
41 |
+
]
|
42 |
+
)
|
43 |
+
|
44 |
+
# Launch the interface
|
45 |
+
iface.launch()
|