Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from diffusers import DiffusionPipeline | |
import random | |
from huggingface_hub import login | |
import os | |
# Authenticate using the token stored in Hugging Face Spaces secrets | |
if 'HF_TOKEN' in os.environ: | |
login(token=os.environ['HF_TOKEN']) | |
else: | |
raise ValueError("HF_TOKEN not found in environment variables. Please add it to your Space's secrets.") | |
# Initialize the base model and specific LoRA | |
base_model = "black-forest-labs/FLUX.1-dev" | |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.float16) | |
# Check if CUDA is available and move the model to GPU if possible | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
pipe = pipe.to(device) | |
lora_repo = "sagar007/sagar_flux" | |
trigger_word = "sagar" | |
pipe.load_lora_weights(lora_repo) | |
MAX_SEED = 2**32-1 | |
def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
progress(0, f"Starting image generation (using {device})...") | |
image = pipe( | |
prompt=f"{prompt} {trigger_word}", | |
num_inference_steps=steps, | |
guidance_scale=cfg_scale, | |
width=width, | |
height=height, | |
generator=generator, | |
cross_attention_kwargs={"scale": lora_scale}, | |
).images[0] | |
progress(100, "Completed!") | |
return image, seed | |
# Gradio interface setup | |
with gr.Blocks() as app: | |
gr.Markdown("# Text-to-Image Generation with LoRA") | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt") | |
run_button = gr.Button("Generate") | |
with gr.Column(): | |
result = gr.Image(label="Result") | |
with gr.Row(): | |
cfg_scale = gr.Slider(minimum=1, maximum=20, value=7, step=0.1, label="CFG Scale") | |
steps = gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Steps") | |
with gr.Row(): | |
width = gr.Slider(minimum=128, maximum=1024, value=512, step=64, label="Width") | |
height = gr.Slider(minimum=128, maximum=1024, value=512, step=64, label="Height") | |
with gr.Row(): | |
seed = gr.Number(label="Seed", precision=0) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
lora_scale = gr.Slider(minimum=0, maximum=1, value=0.75, step=0.01, label="LoRA Scale") | |
run_button.click( | |
run_lora, | |
inputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale], | |
outputs=[result, seed] | |
) | |
# Launch the app | |
app.launch() |