File size: 4,236 Bytes
4321e7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import random
import numpy as np
import torch
from torch.utils.data import Dataset
from augmentation import (
    mask_augmentation,
    random_change_augmentation,
    random_delete_augmentation,
    truncate_augmentation,
)


def tokenize_input(cfg, text):
    inputs = cfg.tokenizer(
        text,
        add_special_tokens=True,
        max_length=cfg.max_length,
        padding="max_length",
        truncation=True,
        return_offsets_mapping=False,
        return_attention_mask=True,
    )
    for k, v in inputs.items():
        inputs[k] = torch.tensor(v, dtype=torch.long)
    return inputs


def one_hot_encoding(aa, amino_acids, cfg):
    aa = aa[: cfg.max_length].ljust(cfg.max_length, " ")
    one_hot = np.zeros((len(aa), len(amino_acids)))
    for i, a in enumerate(aa):
        if a in amino_acids:
            one_hot[i, amino_acids.index(a)] = 1
    return one_hot


def one_hot_encode_input(text, cfg):
    inputs = one_hot_encoding(text, ("A","C","D","E","F","G","H","I","K","L","M","N","P","Q","R","S","T","V","W","Y"," "), cfg)
    return torch.tensor(inputs, dtype=torch.float)


class PLTNUMDataset(Dataset):
    def __init__(self, cfg, df, train=True):
        self.df = df
        self.cfg = cfg
        self.train = train

    def __len__(self):
        return len(self.df)

    def __getitem__(self, idx):
        data = self.df.iloc[idx]
        aas = self._adjust_sequence_length(data[self.cfg.sequence_col])

        if self.train:
            aas = self._apply_augmentation(aas)

        aas = aas.replace("__", "<pad>")

        inputs = tokenize_input(self.cfg, aas)

        if "target" in data:
            return inputs, torch.tensor(data["target"], dtype=torch.float32)
        return inputs, np.nan

    def _adjust_sequence_length(self, aas):
        max_length = (self.cfg.max_length - 2) * self.cfg.token_length
        if len(aas) > max_length:
            if self.cfg.used_sequence == "left":
                return aas[: max_length]
            elif self.cfg.used_sequence == "right":
                return aas[-max_length:]
            elif self.cfg.used_sequence == "both":
                half_max_len = max_length // 2
                return aas[:half_max_len] + "__" + aas[-half_max_len:]
            elif self.cfg.used_sequence == "internal":
                offset = (len(aas) - max_length) // 2
                return aas[offset:offset + max_length]
        return aas

    def _apply_augmentation(self, aas):
        if self.cfg.random_change_ratio > 0:
            aas = random_change_augmentation(aas, self.cfg)
        if (
            random.random() <= self.cfg.random_delete_prob
        ) and self.cfg.random_delete_ratio > 0:
            aas = random_delete_augmentation(aas, self.cfg)
        if (random.random() <= self.cfg.mask_prob) and self.cfg.mask_ratio > 0:
            aas = mask_augmentation(aas, self.cfg)
        if random.random() <= self.cfg.truncate_augmentation_prob:
            aas = truncate_augmentation(aas, self.cfg)
        return aas


class LSTMDataset(Dataset):
    def __init__(self, cfg, df, train=True):
        self.df = df
        self.cfg = cfg
        self.train = train

    def __len__(self):
        return len(self.df)

    def __getitem__(self, idx):
        data = self.df.iloc[idx]
        aas = data[self.cfg.sequence_col]
        aas = self._adjust_sequence_length(aas)
        aas = aas.replace("__", "<pad>")

        inputs = one_hot_encode_input(aas, self.cfg)

        return inputs, torch.tensor(data["target"], dtype=torch.float32)

    def _adjust_sequence_length(self, aas):
        max_length = (self.cfg.max_length - 2) * self.cfg.token_length
        if len(aas) > max_length:
            if self.cfg.used_sequence == "left":
                return aas[:max_length]
            elif self.cfg.used_sequence == "right":
                return aas[-max_length:]
            elif self.cfg.used_sequence == "both":
                half_max_len = max_length // 2
                return aas[:half_max_len] + "__" + aas[-half_max_len:]
            elif self.cfg.used_sequence == "internal":
                offset = (len(aas) - max_length) // 2
                return aas[offset:offset + max_length]
        return aas