File size: 4,614 Bytes
4321e7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import gc
import os
import sys
import argparse

import pandas as pd
import torch
from torch.utils.data import DataLoader
from transformers import AutoTokenizer

sys.path.append(".")
from utils import seed_everything
from models import PLTNUM
from datasets import PLTNUMDataset


def parse_args():
    parser = argparse.ArgumentParser(
        description="Prediction script for protein sequence classification/regression."
    )
    parser.add_argument(
        "--data_path",
        type=str,
        required=True,
        help="Path to the input data.",
    )
    parser.add_argument(
        "--model",
        type=str,
        default="westlake-repl/SaProt_650M_AF2",
        help="Pretrained model name or path.",
    )
    parser.add_argument(
        "--architecture",
        type=str,
        default="SaProt",
        help="Model architecture: 'ESM2', 'SaProt', or 'LSTM'.",
    )
    parser.add_argument(
        "--model_path",
        type=str,
        required=True,
        help="Path to the model for prediction.",
    )
    parser.add_argument("--batch_size", type=int, default=4, help="Batch size.")
    parser.add_argument(
        "--seed",
        type=int,
        default=42,
        help="Seed for reproducibility.",
    )
    parser.add_argument(
        "--use_amp",
        action="store_true",
        default=False,
        help="Use AMP for mixed precision prediction.",
    )
    parser.add_argument(
        "--num_workers",
        type=int,
        default=4,
        help="Number of workers for data loading.",
    )
    parser.add_argument(
        "--max_length",
        type=int,
        default=512,
        help="Maximum input sequence length. Two tokens are used fo <cls> and <eos> tokens. So the actual length of input sequence is max_length - 2. Padding or truncation is applied to make the length of input sequence equal to max_length.",
    )
    parser.add_argument(
        "--used_sequence",
        type=str,
        default="left",
        help="Which part of the sequence to use: 'left', 'right', 'both', or 'internal'.",
    )
    parser.add_argument(
        "--padding_side",
        type=str,
        default="right",
        help="Padding side: 'right' or 'left'.",
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="./output",
        help="Output directory.",
    )
    parser.add_argument(
        "--task",
        type=str,
        default="classification",
        help="Task type: 'classification' or 'regression'.",
    )
    parser.add_argument(
        "--sequence_col",
        type=str,
        default="aa_foldseek",
        help="Column name fot the input sequence.",
    )

    return parser.parse_args()


def predict_fn(valid_loader, model, cfg):
    model.eval()
    predictions = []

    for inputs, _ in valid_loader:
        inputs = inputs.to(cfg.device)
        with torch.no_grad():
            with torch.cuda.amp.autocast(enabled=cfg.use_amp):
                preds = (
                    torch.sigmoid(model(inputs))
                    if cfg.task == "classification"
                    else model(inputs)
                )
        predictions += preds.cpu().tolist()

    return predictions


def predict(folds, model_path, cfg):
    dataset = PLTNUMDataset(cfg, folds, train=False)
    loader = DataLoader(
        dataset,
        batch_size=cfg.batch_size,
        shuffle=False,
        num_workers=cfg.num_workers,
        pin_memory=True,
        drop_last=False,
    )

    model = PLTNUM(cfg)
    model.load_state_dict(torch.load(model_path, map_location=cfg.device))
    model.to(cfg.device)

    predictions = predict_fn(loader, model, cfg)

    folds["raw prediction values"] = predictions
    if cfg.task == "classification":
        folds["binary prediction values"] = [1 if x > 0.5 else 0 for x in predictions]
    torch.cuda.empty_cache()
    gc.collect()
    return folds


if __name__ == "__main__":
    config = parse_args()
    config.token_length = 2 if config.architecture == "SaProt" else 1
    config.device = "cuda" if torch.cuda.is_available() else "cpu"

    if not os.path.exists(config.output_dir):
        os.makedirs(config.output_dir)

    if config.used_sequence == "both":
        config.max_length += 1

    seed_everything(config.seed)

    df = pd.read_csv(config.data_path)

    tokenizer = AutoTokenizer.from_pretrained(
        config.model, padding_side=config.padding_side
    )
    config.tokenizer = tokenizer

    result = predict(df, config.model_path, config)
    result.to_csv(os.path.join(config.output_dir, "result.csv"), index=False)