PLTNUM / app.py
sagawa's picture
Update app.py
93d358b verified
raw
history blame
9.65 kB
import gradio as gr
import sys
import random
import os
import pandas as pd
import torch
import itertools
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
import shap
sys.path.append("scripts/")
from foldseek_util import get_struc_seq
from utils import seed_everything, save_pickle
from models import PLTNUM_PreTrainedModel
from datasets_ import PLTNUMDataset
class Config:
def __init__(self):
self.batch_size = 2
self.use_amp = False
self.num_workers = 1
self.max_length = 512
self.used_sequence = "left"
self.padding_side = "right"
self.task = "classification"
self.sequence_col = "sequence"
self.seed = 42
self.max_evals = 10
def predict_stability_with_pdb(model_choice, organism_choice, pdb_files, cfg=Config()):
results = {"file_name": [],
"raw prediction value": [],
"binary prediction value": []
}
file_names = []
input_sequences = []
for pdb_file in pdb_files:
pdb_path = pdb_file.name
os.system("chmod 777 bin/foldseek")
sequences = get_foldseek_seq(pdb_path)
if not sequences:
results["file_name"].append(pdb_file.name.split("/")[-1])
results["raw prediction value"].append(None)
results["binary prediction value"].append(None)
continue
sequence = sequences[2] if model_choice == "SaProt" else sequences[0]
file_names.append(pdb_file.name.split("/")[-1])
input_sequences.append(sequence)
raw_prediction, binary_prediction = predict_stability_core(model_choice, organism_choice, input_sequences, cfg)
results["file_name"] = results["file_name"] + file_names
results["raw prediction value"] = results["raw prediction value"] + raw_prediction
results["binary prediction value"] = results["binary prediction value"] + binary_prediction
df = pd.DataFrame(results)
output_csv = "/tmp/predictions.csv"
df.to_csv(output_csv, index=False)
return output_csv
def predict_stability_with_sequence(model_choice, organism_choice, sequence, cfg=Config()):
try:
if not sequence:
return "No valid sequence provided."
raw_prediction, binary_prediction = predict_stability_core(model_choice, organism_choice, [sequence], cfg)
df = pd.DataFrame({"sequence": sequence, "raw prediction value": raw_prediction, "binary prediction value": binary_prediction})
output_csv = "/tmp/predictions.csv"
df.to_csv(output_csv, index=False)
return output_csv
except Exception as e:
return f"An error occurred: {str(e)}"
def predict_stability_core(model_choice, organism_choice, sequences, cfg=Config()):
cell_line = "HeLa" if organism_choice == "Human" else "NIH3T3"
cfg.model = f"sagawa/PLTNUM-{model_choice}-{cell_line}"
cfg.architecture = model_choice
cfg.model_path = f"sagawa/PLTNUM-{model_choice}-{cell_line}"
output = predict(cfg, sequences)
return output
def get_foldseek_seq(pdb_path):
parsed_seqs = get_struc_seq(
"bin/foldseek",
pdb_path,
["A"],
process_id=random.randint(0, 10000000),
)["A"]
return parsed_seqs
def predict(cfg, sequences):
cfg.token_length = 2 if cfg.architecture == "SaProt" else 1
cfg.device = "cuda" if torch.cuda.is_available() else "cpu"
if cfg.used_sequence == "both":
cfg.max_length += 1
seed_everything(cfg.seed)
df = pd.DataFrame({cfg.sequence_col: sequences})
tokenizer = AutoTokenizer.from_pretrained(
cfg.model_path, padding_side=cfg.padding_side
)
cfg.tokenizer = tokenizer
dataset = PLTNUMDataset(cfg, df, train=False)
dataloader = DataLoader(
dataset,
batch_size=cfg.batch_size,
shuffle=False,
num_workers=cfg.num_workers,
pin_memory=True,
drop_last=False,
)
model = PLTNUM_PreTrainedModel.from_pretrained(cfg.model_path, cfg=cfg)
model.to(cfg.device)
model.eval()
predictions = []
for inputs, _ in dataloader:
inputs = inputs.to(cfg.device)
with torch.no_grad():
with torch.amp.autocast(cfg.device, enabled=cfg.use_amp):
preds = (
torch.sigmoid(model(inputs))
if cfg.task == "classification"
else model(inputs)
)
predictions += preds.cpu().tolist()
predictions = list(itertools.chain.from_iterable(predictions))
return predictions, [1 if x > 0.5 else 0 for x in predictions]
def calculate_shap_values_with_pdb(model_choice, organism_choice, pdb_files, cfg=Config()):
input_sequences = []
for pdb_file in pdb_files:
pdb_path = pdb_file.name
os.system("chmod 777 bin/foldseek")
sequences = get_foldseek_seq(pdb_path)
sequence = sequences[2] if model_choice == "SaProt" else sequences[0]
input_sequences.append(sequence)
shap_values = calculate_shap_values_core(model_choice, organism_choice, input_sequences, cfg)
output_path = "/tmp/shap_values.pkl"
save_pickle(
output_path, shap_values
)
return output_path
def calculate_shap_fn(texts, model, cfg):
if len(texts) == 1:
texts = texts[0]
else:
texts = texts.tolist()
inputs = cfg.tokenizer(
texts,
return_tensors="pt",
padding=True,
truncation=True,
max_length=cfg.max_length,
)
inputs = {k: v.to(cfg.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(inputs)
outputs = torch.sigmoid(outputs).detach().cpu().numpy()
return outputs
def calculate_shap_values_core(model_choice, organism_choice, sequences, cfg=Config()):
cfg.device = "cuda" if torch.cuda.is_available() else "cpu"
seed_everything(cfg.seed)
tokenizer = AutoTokenizer.from_pretrained(
cfg.model_path, padding_side=cfg.padding_side
)
cfg.tokenizer = tokenizer
model = PLTNUM_PreTrainedModel.from_pretrained(cfg.model_path, cfg=cfg).to(cfg.device)
model.eval()
# build an explainer using a token masker
explainer = shap.Explainer(lambda x: calculate_shap_fn(x, model, cfg), cfg.tokenizer)
shap_values = explainer(
sequences,
batch_size=cfg.batch_size,
max_evals=cfg.max_evals,
)
return shap_values
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown(
"""
# PLTNUM: Protein LifeTime Neural Model
**Predict the protein half-life from its sequence or PDB file.**
"""
)
gr.Image(
"https://github.com/sagawatatsuya/PLTNUM/blob/main/model-image.png?raw=true",
label="Model Image",
)
# Model and Organism selection in the same row to avoid layout issues
with gr.Row():
model_choice = gr.Radio(
choices=["SaProt", "ESM2"],
label="Select PLTNUM's base model.",
value="SaProt",
)
organism_choice = gr.Radio(
choices=["Mouse", "Human"],
label="Select the target organism.",
value="Mouse",
)
with gr.Tabs():
with gr.TabItem("Upload PDB File"):
gr.Markdown("### Upload your PDB files:")
pdb_files = gr.File(label="Upload PDB Files", file_count="multiple")
predict_button = gr.Button("Predict Stability")
prediction_output = gr.File(
label="Download Predictions"
)
predict_button.click(
fn=predict_stability_with_pdb,
inputs=[model_choice, organism_choice, pdb_files],
outputs=prediction_output,
)
calculate_shap_values_button = gr.Button("Calculate SHAP Values")
shap_values_output = gr.File(
label="Download SHAP Values"
)
calculate_shap_values_button.click(
fn=calculate_shap_values_with_pdb,
inputs=[model_choice, organism_choice, pdb_files],
outputs=shap_values_output,
)
with gr.TabItem("Enter Protein Sequence"):
gr.Markdown("### Enter the protein sequence:")
sequence = gr.Textbox(
label="Protein Sequence",
placeholder="Enter your protein sequence here...",
lines=8,
)
predict_button = gr.Button("Predict Stability")
prediction_output = gr.File(
label="Download Predictions"
)
predict_button.click(
fn=predict_stability_with_sequence,
inputs=[model_choice, organism_choice, sequence],
outputs=prediction_output,
)
gr.Markdown(
"""
### How to Use:
- **Select Model**: Choose between 'SaProt' or 'ESM2' for your prediction.
- **Select Organism**: Choose between 'Mouse' or 'Human'.
- **Upload PDB File**: Choose the 'Upload PDB File' tab and upload your file.
- **Enter Sequence**: Alternatively, switch to the 'Enter Protein Sequence' tab and input your sequence.
- **Predict**: Click 'Predict Stability' to receive the prediction.
"""
)
gr.Markdown(
"""
### About the Tool
This tool allows researchers and scientists to predict the stability of proteins using advanced algorithms. It supports both PDB file uploads and direct sequence input.
"""
)
demo.launch()