PLTNUM / app.py
sagawa's picture
Update app.py
c998ccf verified
raw
history blame
2.37 kB
import gradio as gr
# Assuming 'predict_stability' is your function that predicts protein stability
def predict_stability(pdb_file=None, sequence=None):
# Dummy return for illustration; replace with your actual prediction logic
return "Predicted Stability: Example Output"
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown(
"""
# PLTNUM: Protein LifeTime Neural Model
**Predict the protein half-life from its sequence or PDB file.**
"""
)
gr.MarkDown("![model image](https://github.com/sagawatatsuya/PLTNUM/blob/main/model-image.png)")
model_choice = gr.Radio(choices=["SaProt", "ESM-2"], label="Select PLTNUM's base model.", value="SaProt")
with gr.Tabs():
with gr.TabItem("Upload PDB File"):
gr.Markdown("### Upload your PDB file:")
pdb_file = gr.File(label="Upload PDB File")
predict_button = gr.Button("Predict Stability")
prediction_output = gr.Textbox(label="Stability Prediction", interactive=False)
predict_button.click(fn=predict_stability, inputs=pdb_file, outputs=prediction_output)
with gr.TabItem("Enter Protein Sequence"):
gr.Markdown("### Enter the protein sequence:")
sequence = gr.Textbox(
label="Protein Sequence",
placeholder="Enter your protein sequence here...",
lines=8,
)
predict_button = gr.Button("Predict Stability")
prediction_output = gr.Textbox(label="Stability Prediction", interactive=False)
predict_button.click(fn=predict_stability, inputs=sequence, outputs=prediction_output)
with gr.Row():
gr.Markdown(
"""
### How to Use:
- **Upload PDB File**: Choose the 'Upload PDB File' tab and upload your file.
- **Enter Sequence**: Alternatively, switch to the 'Enter Protein Sequence' tab and input your sequence.
- **Predict**: Click 'Predict Stability' to receive the prediction.
"""
)
gr.Markdown(
"""
### About the Tool
This tool allows researchers and scientists to predict the stability of proteins using advanced algorithms. It supports both PDB file uploads and direct sequence input.
"""
)
demo.launch()