PLTNUM / scripts /predict_with_PreTrainedModel.py
sagawa's picture
Upload 17 files
4321e7e verified
import gc
import os
import sys
import argparse
import pandas as pd
import torch
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
sys.path.append(".")
from utils import seed_everything
from models import PLTNUM_PreTrainedModel
from datasets import PLTNUMDataset
from predict import predict_fn
def parse_args():
parser = argparse.ArgumentParser(
description="Prediction script for protein sequence classification/regression."
)
parser.add_argument(
"--data_path",
type=str,
required=True,
help="Path to the input data.",
)
parser.add_argument(
"--model",
type=str,
default="westlake-repl/SaProt_650M_AF2",
help="Pretrained model name or path.",
)
parser.add_argument(
"--architecture",
type=str,
default="SaProt",
help="Model architecture: 'ESM2', 'SaProt', or 'LSTM'.",
)
parser.add_argument(
"--model_path",
type=str,
required=True,
help="Path to the model for prediction.",
)
parser.add_argument("--batch_size", type=int, default=4, help="Batch size.")
parser.add_argument(
"--seed",
type=int,
default=42,
help="Seed for reproducibility.",
)
parser.add_argument(
"--use_amp",
action="store_true",
default=False,
help="Use AMP for mixed precision prediction.",
)
parser.add_argument(
"--num_workers",
type=int,
default=4,
help="Number of workers for data loading.",
)
parser.add_argument(
"--max_length",
type=int,
default=512,
help="Maximum input sequence length. Two tokens are used fo <cls> and <eos> tokens. So the actual length of input sequence is max_length - 2. Padding or truncation is applied to make the length of input sequence equal to max_length.",
)
parser.add_argument(
"--used_sequence",
type=str,
default="left",
help="Which part of the sequence to use: 'left', 'right', 'both', or 'internal'.",
)
parser.add_argument(
"--padding_side",
type=str,
default="right",
help="Padding side: 'right' or 'left'.",
)
parser.add_argument(
"--output_dir",
type=str,
default="./output",
help="Output directory.",
)
parser.add_argument(
"--task",
type=str,
default="classification",
help="Task type: 'classification' or 'regression'.",
)
parser.add_argument(
"--sequence_col",
type=str,
default="aa_foldseek",
help="Column name fot the input sequence.",
)
return parser.parse_args()
def predict(folds, model_path, cfg):
dataset = PLTNUMDataset(cfg, folds, train=False)
loader = DataLoader(
dataset,
batch_size=cfg.batch_size,
shuffle=False,
num_workers=cfg.num_workers,
pin_memory=True,
drop_last=False,
)
model = PLTNUM_PreTrainedModel.from_pretrained(model_path, cfg=cfg)
# model.load_state_dict(torch.load(os.path.join(model_path, "pytorch_model.bin"), map_location=cfg.device))
model.to(cfg.device)
predictions = predict_fn(loader, model, cfg)
folds["prediction"] = predictions
torch.cuda.empty_cache()
gc.collect()
return folds
if __name__ == "__main__":
config = parse_args()
config.token_length = 2 if config.architecture == "SaProt" else 1
config.device = "cuda" if torch.cuda.is_available() else "cpu"
if not os.path.exists(config.output_dir):
os.makedirs(config.output_dir)
if config.used_sequence == "both":
config.max_length += 1
seed_everything(config.seed)
df = pd.read_csv(config.data_path)
tokenizer = AutoTokenizer.from_pretrained(
config.model_path, padding_side=config.padding_side
)
config.tokenizer = tokenizer
result = predict(df, config.model_path, config)
result.to_csv(os.path.join(config.output_dir, "result.csv"), index=False)