Spaces:
Sleeping
Sleeping
File size: 9,365 Bytes
5d20072 dea462a 1e85041 64d1371 4b44c6a 684e692 f42c616 dea462a 26b478e 4fcc8cd 26b478e c9cc87b 64d1371 c9cc87b 26b478e 0a48439 725e115 0a48439 725e115 26b478e 0d4a81a 26b478e 0d4a81a 26b478e 64d1371 26b478e 8b0f701 09fe96c 90db3b8 2306856 31057e3 2306856 684e692 8b0f701 71c7113 684e692 8b0f701 71c7113 684e692 2306856 f42c616 2306856 7f9e9d7 2306856 b617e78 90db3b8 b617e78 4b44c6a f42c616 c5afedf f42c616 c5afedf f42c616 c5afedf 2306856 f42c616 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import streamlit as st
import whisper
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import base64
from pydub import AudioSegment
from hezar.models import Model
import librosa
import soundfile as sf
st.set_page_config(
page_title="Sing It Forward App",
page_icon="🎵")
st.markdown(
"""
<style>
body {
background: linear-gradient(to bottom, #0E5AAB, #00ffff);
padding: 20px;
border-radius: 10px;
}
a {
color: #EDA67C !important
}
</style>
""",
unsafe_allow_html=True
)
def load_image(image_file):
with open(image_file, "rb") as f:
return f.read()
image_data = load_image("bcg.jpg")
image_base64 = base64.b64encode(image_data).decode()
st.markdown(
f"""
<style>
.stApp {{
background-image: url(data:image/jpeg;base64,{image_base64});
background-size: cover;
background-position: center;
background-repeat: no-repeat;
}}
</style>
""",
unsafe_allow_html=True
)
st.markdown("<h1 style='text-align: center; margin-bottom: 5px;'>Sing It Forward App🎵</h1>", unsafe_allow_html=True)
description = """
<h5>Welcome to Sing It Forward App!</h5>
<p style="text-align: justify;">
Get ready to test your singing skills and memory! First, listen carefully to the first part of the song, then it’s your turn to shine.
Record yourself singing the next 15 seconds on your own, matching the lyrics and rhythm perfectly. Think you’ve got what it takes to keep the music going?
Let’s see if you can hit the right notes and showcase your talent! Unleash your inner star and take the challenge!
</p>
📌For any questions or contact:
**Name:** <span style="color: #EDA67C;">Sahand Khorsandi</span>
**Email:** <a href="mailto:sahand.kh78@yahoo.com" style="color: #EDA67C;">sahand.kh78@yahoo.com</a>"""
st.markdown(description, unsafe_allow_html=True)
st.write('------')
def cosine_sim(text1, text2):
vectorizer = TfidfVectorizer().fit_transform([text1, text2])
vectors = vectorizer.toarray()
return cosine_similarity(vectors)[0, 1]
def take_challenge(music_file, typed_lyrics, key, language):
st.write("Listen to music since you have to record 15seconds after that")
st.audio(music_file)
audio_value = st.experimental_audio_input("Sing Rest of music:🎙️", key=key)
if audio_value:
with open("user_sing.mp3", "wb") as f:
f.write(audio_value.getbuffer())
if language == "en":
english_model = whisper.load_model("base.en")
user_lyrics = english_model.transcribe("user_sing.mp3", language=language)["text"]
else:
persian_model = Model.load("hezarai/whisper-small-fa")
user_lyrics = persian_model.predict("user_sing.mp3")[0]["text"]
st.write(user_lyrics)
similarity_score = cosine_sim(typed_lyrics, user_lyrics)
if similarity_score > 0.85:
st.success('Awsome! You are doing great', icon="✅")
st.markdown('<style>div.stAlert { background-color: rgba(3, 67, 24, 0.9); }</style>', unsafe_allow_html=True)
else:
st.error('Awful! Try harder next time', icon="🚨")
st.markdown('<style>div.stAlert { background-color: rgba(241, 36, 36, 0.9); }</style>', unsafe_allow_html=True)
def change_volume(input_file, output_file, volume_factor):
sound = AudioSegment.from_mp3(input_file)
volume_changed = sound + volume_factor
volume_changed.export(output_file, format="mp3")
def change_speed(input_file, output_file, speed_factor):
sound, sr = librosa.load(input_file)
speed_changed = librosa.effects.time_stretch(sound, rate=speed_factor)
sf.write(output_file, speed_changed, sr)
def change_pitch(input_file, output_file, pitch_factor):
sound, sr = librosa.load(input_file)
pitch_changed = librosa.effects.pitch_shift(sound, sr=sr, n_steps=pitch_factor)
sf.write(output_file, pitch_changed, sr)
def low_pass_filter(input_file, output_file, cutoff_freq):
sound = AudioSegment.from_mp3(input_file)
low_filtered_sound = sound.low_pass_filter(cutoff_freq)
low_filtered_sound.export(output_file, format="mp3")
def high_pass_filter(input_file, output_file, cutoff_freq):
sound = AudioSegment.from_mp3(input_file)
high_filtered_sound = sound.high_pass_filter(cutoff_freq)
high_filtered_sound.export(output_file, format="mp3")
def pan_left_right(input_file, output_file, pan_factor):
sound = AudioSegment.from_mp3(input_file)
pan_sound = sound.pan(pan_factor)
pan_sound.export(output_file, format="mp3")
def fade_in_ms(input_file, output_file, fade_factor):
sound = AudioSegment.from_mp3(input_file)
faded_sound = sound.fade_in(fade_factor)
faded_sound.export(output_file, format="mp3")
def fade_out_ms(input_file, output_file, fade_factor):
sound = AudioSegment.from_mp3(input_file)
faded_sound = sound.fade_out(fade_factor)
faded_sound.export(output_file, format="mp3")
tab1, tab2 = st.tabs(["Take Challenge", "Make Challenge"])
with tab1:
lyrics = "Far across the distance And spaces between us You have come to show you go on"
take_challenge("titanic.mp3", lyrics, key="en_challenge", language="en")
with tab2:
st.write("Upload music to make challenge:")
uploaded_file = st.file_uploader("Choose a music file", type=["mp3", "wav"])
language_mapping = {"English": "en", "Persian": "fa"}
selected_language = st.radio("Select Language", language_mapping.keys(), horizontal=True)
language = language_mapping[selected_language]
if uploaded_file is not None:
with open("raw_music.mp3", "wb") as f:
f.write(uploaded_file.getbuffer())
st.audio("raw_music.mp3")
current_input = "raw_music.mp3"
output_file = "processed_music.mp3"
trimm_check = st.checkbox("Trim")
if trimm_check:
st.write("Specify start and end times for trimming:")
audio = AudioSegment.from_mp3(current_input)
duration = len(audio) // 1000
start_time = st.number_input("Start Time (seconds)", min_value=0, max_value=duration, value=0)
end_time = st.number_input("End Time (seconds)", min_value=0, max_value=duration, value=duration)
if start_time < end_time:
trimmed_audio = audio[start_time * 1000:end_time * 1000]
trimmed_audio.export(output_file, format="mp3")
current_input = output_file
else:
st.error('Start Time should be smaller than End Time!', icon="❌")
st.markdown('<style>div.stAlert { background-color: rgba(241, 36, 36, 0.9); }</style>', unsafe_allow_html=True)
volume_checkbox = st.checkbox("Change Volume")
if volume_checkbox:
volume_factor = st.slider("Volume Factor (dB)", -30, 30, 0)
change_volume(current_input, output_file, volume_factor)
current_input = output_file
speed_checkbox = st.checkbox("Change Speed")
if speed_checkbox:
speed_factor = st.slider("Speed Factor", 0.25, 2.0, 1.0)
change_speed(current_input, output_file, speed_factor)
current_input = output_file
pitch_checkbox = st.checkbox("Change Pitch")
if pitch_checkbox:
pitch_factor = st.slider("Pitch Shift (fractional steps)", -12, 12, 0)
change_pitch(current_input, output_file, pitch_factor)
current_input = output_file
low_pass_checkbox = st.checkbox("Low Pass Filter")
if low_pass_checkbox:
cutoff_freq = st.slider("Low Pass Filter Cutoff Frequency", min_value=20, max_value=20000, value=2000)
low_pass_filter(current_input, output_file, cutoff_freq)
current_input = output_file
high_pass_checkbox = st.checkbox("High Pass Filter")
if high_pass_checkbox:
cutoff_freq = st.slider("High Pass Filter Cutoff Frequency", min_value=20, max_value=20000, value=2000)
high_pass_filter(current_input, output_file, cutoff_freq)
current_input = output_file
pan_checkbox = st.checkbox("Pan Left/Right")
if pan_checkbox:
pan_factor = st.slider("Pan Factor (-1 for Left, 1 for Right)", -1.0, 1.0, 0.0)
pan_left_right(current_input, output_file, pan_factor)
current_input = output_file
fade_in_checkbox = st.checkbox("Fade In")
if fade_in_checkbox:
fade_in_time = st.slider("Fade In Duration (ms)", min_value=0, max_value=10000, value=1000)
fade_in_ms(current_input, output_file, fade_in_time)
current_input = output_file
fade_out_checkbox = st.checkbox("Fade Out")
if fade_out_checkbox:
fade_out_time = st.slider("Fade Out Duration (ms)", min_value=0, max_value=10000, value=1000)
fade_out_ms(current_input, output_file, fade_out_time)
current_input = output_file
st.write("Now type what user should sing:")
typed_lyrics = st.text_area("Lyrics to be singed:")
st.write('------')
take_challenge(current_input, typed_lyrics, "unique_key_1", language) |