|
import os |
|
import chainlit as cl |
|
from dotenv import load_dotenv |
|
from operator import itemgetter |
|
from langchain_huggingface import HuggingFaceEndpoint |
|
from langchain_community.document_loaders import TextLoader |
|
from langchain_text_splitters import RecursiveCharacterTextSplitter |
|
from langchain_community.vectorstores import FAISS |
|
from langchain_huggingface import HuggingFaceEndpointEmbeddings |
|
from langchain_core.prompts import PromptTemplate |
|
from langchain.schema.output_parser import StrOutputParser |
|
from langchain.schema.runnable import RunnablePassthrough |
|
from langchain.schema.runnable.config import RunnableConfig |
|
|
|
|
|
|
|
|
|
""" |
|
This function will load our environment file (.env) if it is present. |
|
|
|
NOTE: Make sure that .env is in your .gitignore file - it is by default, but please ensure it remains there. |
|
""" |
|
load_dotenv() |
|
|
|
DATA_DIR = "./data" |
|
VECTORSTORE_DIR = os.path.join(DATA_DIR, "vectorstore") |
|
VECTORSTORE_PATH = os.path.join(VECTORSTORE_DIR, "index.faiss") |
|
""" |
|
We will load our environment variables here. |
|
""" |
|
HF_LLM_ENDPOINT = os.environ["HF_LLM_ENDPOINT"] |
|
HF_EMBED_ENDPOINT = os.environ["HF_EMBED_ENDPOINT"] |
|
HF_TOKEN = os.environ["HF_TOKEN"] |
|
|
|
|
|
|
|
|
|
""" |
|
1. Load Documents from Text File |
|
2. Split Documents into Chunks |
|
3. Load HuggingFace Embeddings (remember to use the URL we set above) |
|
4. Index Files if they do not exist, otherwise load the vectorstore |
|
""" |
|
|
|
|
|
text_loader = TextLoader("./data/paul_graham_essays.txt") |
|
documents = text_loader.load() |
|
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=30) |
|
split_documents = text_splitter.split_documents(documents) |
|
|
|
|
|
hf_embeddings = HuggingFaceEndpointEmbeddings( |
|
model=HF_EMBED_ENDPOINT, |
|
task="feature-extraction", |
|
huggingfacehub_api_token=os.environ["HF_TOKEN"], |
|
) |
|
|
|
if os.path.exists(VECTORSTORE_PATH): |
|
vectorstore = FAISS.load_local( |
|
"/home/user/app/data/vectorstore", |
|
hf_embeddings, |
|
allow_dangerous_deserialization=True |
|
) |
|
hf_retriever = vectorstore.as_retriever() |
|
print("Loaded Vectorstore") |
|
else: |
|
print("Indexing Files") |
|
os.makedirs(VECTORSTORE_PATH, exist_ok=True) |
|
|
|
|
|
for i in range(0, len(split_documents), 32): |
|
if i == 0: |
|
vectorstore = FAISS.from_documents(split_documents[i:i+32], hf_embeddings) |
|
continue |
|
vectorstore.add_documents(split_documents[i:i+32]) |
|
vectorstore.save_local(VECTORSTORE_PATH) |
|
hf_retriever = vectorstore.as_retriever() |
|
|
|
|
|
""" |
|
1. Define a String Template |
|
2. Create a Prompt Template from the String Template |
|
""" |
|
|
|
RAG_PROMPT_TEMPLATE = """\ |
|
<|start_header_id|>system<|end_header_id|> |
|
You are a helpful assistant. You answer user questions based on provided context. If you can't answer the question with the provided context,\ |
|
say you don't know.<|eot_id|> |
|
|
|
<|start_header_id|>user<|end_header_id|> |
|
User Query: |
|
{query} |
|
|
|
Context: |
|
{context}<|eot_id|> |
|
|
|
<|start_header_id|>assistant<|end_header_id|> |
|
""" |
|
|
|
|
|
|
|
rag_prompt =PromptTemplate.from_template(RAG_PROMPT_TEMPLATE) |
|
|
|
|
|
""" |
|
1. Create a HuggingFaceEndpoint for the LLM |
|
""" |
|
|
|
hf_llm = HuggingFaceEndpoint( |
|
endpoint_url=f"{HF_LLM_ENDPOINT}", |
|
max_new_tokens=512, |
|
top_k=10, |
|
top_p=0.95, |
|
typical_p=0.95, |
|
temperature=0.01, |
|
repetition_penalty=1.03, |
|
huggingfacehub_api_token=os.environ["HF_TOKEN"] |
|
) |
|
|
|
@cl.author_rename |
|
def rename(original_author: str): |
|
""" |
|
This function can be used to rename the 'author' of a message. |
|
|
|
In this case, we're overriding the 'Assistant' author to be 'Paul Graham Essay Bot'. |
|
""" |
|
rename_dict = { |
|
"Assistant" : "Paul Graham Essay Bot" |
|
} |
|
return rename_dict.get(original_author, original_author) |
|
|
|
@cl.on_chat_start |
|
async def start_chat(): |
|
""" |
|
This function will be called at the start of every user session. |
|
|
|
We will build our LCEL RAG chain here, and store it in the user session. |
|
|
|
The user session is a dictionary that is unique to each user session, and is stored in the memory of the server. |
|
""" |
|
|
|
|
|
lcel_rag_chain = ( {"context": itemgetter("query") | hf_retriever, "query": itemgetter("query")} |
|
|
|
| rag_prompt | hf_llm |
|
) |
|
|
|
cl.user_session.set("lcel_rag_chain", lcel_rag_chain) |
|
|
|
@cl.on_message |
|
async def main(message: cl.Message): |
|
""" |
|
This function will be called every time a message is recieved from a session. |
|
|
|
We will use the LCEL RAG chain to generate a response to the user query. |
|
|
|
The LCEL RAG chain is stored in the user session, and is unique to each user session - this is why we can access it here. |
|
""" |
|
lcel_rag_chain = cl.user_session.get("lcel_rag_chain") |
|
|
|
msg = cl.Message(content="") |
|
|
|
async for chunk in lcel_rag_chain.astream( |
|
{"query": message.content}, |
|
config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]), |
|
): |
|
await msg.stream_token(chunk) |
|
|
|
await msg.send() |