sahanes commited on
Commit
f4a012c
·
1 Parent(s): 961fb26

operion files

Browse files
Files changed (5) hide show
  1. Dockerfile +11 -0
  2. app.py +167 -0
  3. chainlit.md +1 -0
  4. data/paul_graham_essays.txt +0 -0
  5. requirements.txt +8 -0
Dockerfile ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.9
2
+ RUN useradd -m -u 1000 user
3
+ USER user
4
+ ENV HOME=/home/user \
5
+ PATH=/home/user/.local/bin:$PATH
6
+ WORKDIR $HOME/app
7
+ COPY --chown=user . $HOME/app
8
+ COPY ./requirements.txt ~/app/requirements.txt
9
+ RUN pip install -r requirements.txt
10
+ COPY . .
11
+ CMD ["chainlit", "run", "app.py", "--port", "7860"]
app.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import chainlit as cl
3
+ from dotenv import load_dotenv
4
+ from operator import itemgetter
5
+ from langchain_huggingface import HuggingFaceEndpoint
6
+ from langchain_community.document_loaders import TextLoader
7
+ from langchain_text_splitters import RecursiveCharacterTextSplitter
8
+ from langchain_community.vectorstores import FAISS
9
+ from langchain_huggingface import HuggingFaceEndpointEmbeddings
10
+ from langchain_core.prompts import PromptTemplate
11
+ from langchain.schema.output_parser import StrOutputParser
12
+ from langchain.schema.runnable import RunnablePassthrough
13
+ from langchain.schema.runnable.config import RunnableConfig
14
+
15
+ # GLOBAL SCOPE - ENTIRE APPLICATION HAS ACCESS TO VALUES SET IN THIS SCOPE #
16
+ # ---- ENV VARIABLES ---- #
17
+ """
18
+ This function will load our environment file (.env) if it is present.
19
+
20
+ NOTE: Make sure that .env is in your .gitignore file - it is by default, but please ensure it remains there.
21
+ """
22
+ load_dotenv()
23
+
24
+ """
25
+ We will load our environment variables here.
26
+ """
27
+ HF_LLM_ENDPOINT = os.environ["HF_LLM_ENDPOINT"]
28
+ HF_EMBED_ENDPOINT = os.environ["HF_EMBED_ENDPOINT"]
29
+ HF_TOKEN = os.environ["HF_TOKEN"]
30
+
31
+ # ---- GLOBAL DECLARATIONS ---- #
32
+
33
+ # -- RETRIEVAL -- #
34
+ """
35
+ 1. Load Documents from Text File
36
+ 2. Split Documents into Chunks
37
+ 3. Load HuggingFace Embeddings (remember to use the URL we set above)
38
+ 4. Index Files if they do not exist, otherwise load the vectorstore
39
+ """
40
+ ### 1. CREATE TEXT LOADER AND LOAD DOCUMENTS
41
+ ### NOTE: PAY ATTENTION TO THE PATH THEY ARE IN.
42
+ text_loader = TextLoader("./data/paul_graham_essays.txt")
43
+ documents = text_loader.load()
44
+
45
+ ### 2. CREATE TEXT SPLITTER AND SPLIT DOCUMENTS
46
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=30)
47
+ split_documents = text_splitter.split_documents(documents)
48
+
49
+ ### 3. LOAD HUGGINGFACE EMBEDDINGS
50
+ hf_embeddings = HuggingFaceEndpointEmbeddings(
51
+ model=HF_EMBED_ENDPOINT,
52
+ task="feature-extraction",
53
+ huggingfacehub_api_token=os.environ["HF_TOKEN"],
54
+ )
55
+ ## Prevent re-indexing if vectorstores already exists
56
+ if os.path.exists("./data/vectorstore"):
57
+ vectorstore = FAISS.load_local(
58
+ "./data/vectorstore",
59
+ hf_embeddings,
60
+ allow_dangerous_deserialization=True # this is necessary to load the vectorstore from disk as it's stored as a `.pkl` file.
61
+ )
62
+ hf_retriever = vectorstore.as_retriever()
63
+ print("Loaded Vectorstore")
64
+ else:
65
+ print("Indexing Files")
66
+ os.makedirs("./data/vectorstore", exist_ok=True)
67
+ ### 4. INDEX FILES
68
+ ### NOTE: REMEMBER TO BATCH THE DOCUMENTS WITH MAXIMUM BATCH SIZE = 32
69
+ for i in range(0, len(split_documents), 32):
70
+ if i == 0:
71
+ vectorstore = FAISS.from_documents(split_documents[i:i+32], hf_embeddings)
72
+ continue
73
+ vectorstore.add_documents(split_documents[i:i+32])
74
+ vectorstore.save_local("./data/vectorstore")
75
+ hf_retriever = vectorstore.as_retriever()
76
+
77
+ # -- AUGMENTED -- #
78
+ """
79
+ 1. Define a String Template
80
+ 2. Create a Prompt Template from the String Template
81
+ """
82
+ ### 1. DEFINE STRING TEMPLATE
83
+ RAG_PROMPT_TEMPLATE = """\
84
+ <|start_header_id|>system<|end_header_id|>
85
+ You are a helpful assistant. You answer user questions based on provided context. If you can't answer the question with the provided context,\
86
+ say you don't know.<|eot_id|>
87
+
88
+ <|start_header_id|>user<|end_header_id|>
89
+ User Query:
90
+ {query}
91
+
92
+ Context:
93
+ {context}<|eot_id|>
94
+
95
+ <|start_header_id|>assistant<|end_header_id|>
96
+ """
97
+ #Note that we do not have the response here. We have assistent, we ONLY start, but not followed by <|eot_id> as we do not have a response YET.
98
+
99
+ ### 2. CREATE PROMPT TEMPLATE
100
+ rag_prompt =PromptTemplate.from_template(RAG_PROMPT_TEMPLATE)
101
+
102
+ # -- GENERATION -- #
103
+ """
104
+ 1. Create a HuggingFaceEndpoint for the LLM
105
+ """
106
+ ### 1. CREATE HUGGINGFACE ENDPOINT FOR LLM
107
+ hf_llm = HuggingFaceEndpoint(
108
+ endpoint_url=f"{HF_LLM_ENDPOINT}",
109
+ max_new_tokens=512,
110
+ top_k=10,
111
+ top_p=0.95,
112
+ typical_p=0.95,
113
+ temperature=0.01,
114
+ repetition_penalty=1.03,
115
+ huggingfacehub_api_token=os.environ["HF_TOKEN"]
116
+ )
117
+
118
+ @cl.author_rename
119
+ def rename(original_author: str):
120
+ """
121
+ This function can be used to rename the 'author' of a message.
122
+
123
+ In this case, we're overriding the 'Assistant' author to be 'Paul Graham Essay Bot'.
124
+ """
125
+ rename_dict = {
126
+ "Assistant" : "Paul Graham Essay Bot"
127
+ }
128
+ return rename_dict.get(original_author, original_author)
129
+
130
+ @cl.on_chat_start
131
+ async def start_chat():
132
+ """
133
+ This function will be called at the start of every user session.
134
+
135
+ We will build our LCEL RAG chain here, and store it in the user session.
136
+
137
+ The user session is a dictionary that is unique to each user session, and is stored in the memory of the server.
138
+ """
139
+
140
+ ### BUILD LCEL RAG CHAIN THAT ONLY RETURNS TEXT
141
+ lcel_rag_chain = ( {"context": itemgetter("query") | hf_retriever, "query": itemgetter("query")}
142
+
143
+ | rag_prompt | hf_llm
144
+ )
145
+
146
+ cl.user_session.set("lcel_rag_chain", lcel_rag_chain)
147
+
148
+ @cl.on_message
149
+ async def main(message: cl.Message):
150
+ """
151
+ This function will be called every time a message is recieved from a session.
152
+
153
+ We will use the LCEL RAG chain to generate a response to the user query.
154
+
155
+ The LCEL RAG chain is stored in the user session, and is unique to each user session - this is why we can access it here.
156
+ """
157
+ lcel_rag_chain = cl.user_session.get("lcel_rag_chain")
158
+
159
+ msg = cl.Message(content="")
160
+
161
+ async for chunk in lcel_rag_chain.astream(
162
+ {"query": message.content},
163
+ config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
164
+ ):
165
+ await msg.stream_token(chunk)
166
+
167
+ await msg.send()
chainlit.md ADDED
@@ -0,0 +1 @@
 
 
1
+ # Here is Paul Graham Assistent BOT! Ask me any questions from his essay.
data/paul_graham_essays.txt ADDED
The diff for this file is too large to render. See raw diff
 
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ chainlit==0.7.700
2
+ langchain==0.2.5
3
+ langchain_community==0.2.5
4
+ langchain_core==0.2.9
5
+ langchain_huggingface==0.0.3
6
+ langchain_text_splitters==0.2.1
7
+ python-dotenv==1.0.1
8
+ faiss-cpu