sahilnishad's picture
Update app.py
e435685 verified
raw
history blame
1.75 kB
# streamlit_app.py
import streamlit as st
from PIL import Image
from transformers import AutoModelForCausalLM, AutoProcessor
import torch
# Load the model and processor
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AutoModelForCausalLM.from_pretrained("sahilnishad/Florence-2-FT-DocVQA", trust_remote_code=True).to(device)
processor = AutoProcessor.from_pretrained("sahilnishad/Florence-2-FT-DocVQA", trust_remote_code=True)
# Function to run inference
def get_answer(task_prompt, question, image):
prompt = task_prompt + question
if image.mode != "RGB":
image = image.convert("RGB")
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
with torch.no_grad():
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
num_beams=3
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_text
# Streamlit UI
st.title("Scanned Document Question Answering with Florence-2")
st.write("Upload scanned document image and ask a question")
# File uploader for the document image
uploaded_file = st.file_uploader("Choose a document image...", type=["jpg", "jpeg", "png"])
# Text input for the question
question = st.text_input("Enter your question:")
# Run the model and display the answer
if uploaded_file is not None and question:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Document", use_column_width=True)
with st.spinner("Generating answer..."):
answer = get_answer("<DocVQA>", question, image)
st.write("**Answer:**", answer)