EMAGE / dataloaders /beat_smplx2020.py
H-Liu1997's picture
Upload folder using huggingface_hub
2d47d90 verified
import os
import pickle
import math
import shutil
import numpy as np
import lmdb as lmdb
import textgrid as tg
import pandas as pd
import torch
import glob
import json
from termcolor import colored
from loguru import logger
from collections import defaultdict
from torch.utils.data import Dataset
import torch.distributed as dist
import pyarrow
import librosa
import smplx
from .build_vocab import Vocab
from .utils.audio_features import Wav2Vec2Model
from .data_tools import joints_list
from .utils import rotation_conversions as rc
from .utils import other_tools
class CustomDataset(Dataset):
def __init__(self, args, loader_type, augmentation=None, kwargs=None, build_cache=True):
self.args = args
self.loader_type = loader_type
self.rank = dist.get_rank()
self.ori_stride = self.args.stride
self.ori_length = self.args.pose_length
self.alignment = [0,0] # for trinity
self.ori_joint_list = joints_list[self.args.ori_joints]
self.tar_joint_list = joints_list[self.args.tar_joints]
if 'smplx' in self.args.pose_rep:
self.joint_mask = np.zeros(len(list(self.ori_joint_list.keys()))*3)
self.joints = len(list(self.ori_joint_list.keys()))
for joint_name in self.tar_joint_list:
self.joint_mask[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
else:
self.joints = len(list(self.ori_joint_list.keys()))+1
self.joint_mask = np.zeros(self.joints*3)
for joint_name in self.tar_joint_list:
if joint_name == "Hips":
self.joint_mask[3:6] = 1
else:
self.joint_mask[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
# select trainable joints
split_rule = pd.read_csv(args.data_path+"train_test_split.csv")
self.selected_file = split_rule.loc[(split_rule['type'] == loader_type) & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
if args.additional_data and loader_type == 'train':
split_b = split_rule.loc[(split_rule['type'] == 'additional') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
#self.selected_file = split_rule.loc[(split_rule['type'] == 'additional') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
self.selected_file = pd.concat([self.selected_file, split_b])
if self.selected_file.empty:
logger.warning(f"{loader_type} is empty for speaker {self.args.training_speakers}, use train set 0-8 instead")
self.selected_file = split_rule.loc[(split_rule['type'] == 'train') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
self.selected_file = self.selected_file.iloc[0:8]
self.data_dir = args.data_path
if loader_type == "test":
self.args.multi_length_training = [1.0]
self.max_length = int(args.pose_length * self.args.multi_length_training[-1])
self.max_audio_pre_len = math.floor(args.pose_length / args.pose_fps * self.args.audio_sr)
if self.max_audio_pre_len > self.args.test_length*self.args.audio_sr:
self.max_audio_pre_len = self.args.test_length*self.args.audio_sr
if args.word_rep is not None:
with open(f"{args.data_path}weights/vocab.pkl", 'rb') as f:
self.lang_model = pickle.load(f)
preloaded_dir = self.args.root_path + self.args.cache_path + loader_type + f"/{args.pose_rep}_cache"
# if args.pose_norm:
# # careful for rotation vectors
# if not os.path.exists(args.data_path+args.mean_pose_path+f"{args.pose_rep.split('_')[0]}/bvh_mean.npy"):
# self.calculate_mean_pose()
# self.mean_pose = np.load(args.data_path+args.mean_pose_path+f"{args.pose_rep.split('_')[0]}/bvh_mean.npy")
# self.std_pose = np.load(args.data_path+args.mean_pose_path+f"{args.pose_rep.split('_')[0]}/bvh_std.npy")
# if args.audio_norm:
# if not os.path.exists(args.data_path+args.mean_pose_path+f"{args.audio_rep.split('_')[0]}/bvh_mean.npy"):
# self.calculate_mean_audio()
# self.mean_audio = np.load(args.data_path+args.mean_pose_path+f"{args.audio_rep.split('_')[0]}/npy_mean.npy")
# self.std_audio = np.load(args.data_path+args.mean_pose_path+f"{args.audio_rep.split('_')[0]}/npy_std.npy")
# if args.facial_norm:
# if not os.path.exists(args.data_path+args.mean_pose_path+f"{args.pose_rep.split('_')[0]}/bvh_mean.npy"):
# self.calculate_mean_face()
# self.mean_facial = np.load(args.data_path+args.mean_pose_path+f"{args.facial_rep}/json_mean.npy")
# self.std_facial = np.load(args.data_path+args.mean_pose_path+f"{args.facial_rep}/json_std.npy")
if self.args.beat_align:
if not os.path.exists(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy"):
self.calculate_mean_velocity(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy")
self.avg_vel = np.load(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy")
if build_cache and self.rank == 0:
self.build_cache(preloaded_dir)
self.lmdb_env = lmdb.open(preloaded_dir, readonly=True, lock=False)
with self.lmdb_env.begin() as txn:
self.n_samples = txn.stat()["entries"]
def calculate_mean_velocity(self, save_path):
self.smplx = smplx.create(
self.args.data_path_1+"smplx_models/",
model_type='smplx',
gender='NEUTRAL_2020',
use_face_contour=False,
num_betas=300,
num_expression_coeffs=100,
ext='npz',
use_pca=False,
).cuda().eval()
dir_p = self.data_dir + self.args.pose_rep + "/"
all_list = []
from tqdm import tqdm
for tar in tqdm(os.listdir(dir_p)):
if tar.endswith(".npz"):
m_data = np.load(dir_p+tar, allow_pickle=True)
betas, poses, trans, exps = m_data["betas"], m_data["poses"], m_data["trans"], m_data["expressions"]
n, c = poses.shape[0], poses.shape[1]
betas = betas.reshape(1, 300)
betas = np.tile(betas, (n, 1))
betas = torch.from_numpy(betas).cuda().float()
poses = torch.from_numpy(poses.reshape(n, c)).cuda().float()
exps = torch.from_numpy(exps.reshape(n, 100)).cuda().float()
trans = torch.from_numpy(trans.reshape(n, 3)).cuda().float()
max_length = 128
s, r = n//max_length, n%max_length
#print(n, s, r)
all_tensor = []
for i in range(s):
with torch.no_grad():
joints = self.smplx(
betas=betas[i*max_length:(i+1)*max_length],
transl=trans[i*max_length:(i+1)*max_length],
expression=exps[i*max_length:(i+1)*max_length],
jaw_pose=poses[i*max_length:(i+1)*max_length, 66:69],
global_orient=poses[i*max_length:(i+1)*max_length,:3],
body_pose=poses[i*max_length:(i+1)*max_length,3:21*3+3],
left_hand_pose=poses[i*max_length:(i+1)*max_length,25*3:40*3],
right_hand_pose=poses[i*max_length:(i+1)*max_length,40*3:55*3],
return_verts=True,
return_joints=True,
leye_pose=poses[i*max_length:(i+1)*max_length, 69:72],
reye_pose=poses[i*max_length:(i+1)*max_length, 72:75],
)['joints'][:, :55, :].reshape(max_length, 55*3)
all_tensor.append(joints)
if r != 0:
with torch.no_grad():
joints = self.smplx(
betas=betas[s*max_length:s*max_length+r],
transl=trans[s*max_length:s*max_length+r],
expression=exps[s*max_length:s*max_length+r],
jaw_pose=poses[s*max_length:s*max_length+r, 66:69],
global_orient=poses[s*max_length:s*max_length+r,:3],
body_pose=poses[s*max_length:s*max_length+r,3:21*3+3],
left_hand_pose=poses[s*max_length:s*max_length+r,25*3:40*3],
right_hand_pose=poses[s*max_length:s*max_length+r,40*3:55*3],
return_verts=True,
return_joints=True,
leye_pose=poses[s*max_length:s*max_length+r, 69:72],
reye_pose=poses[s*max_length:s*max_length+r, 72:75],
)['joints'][:, :55, :].reshape(r, 55*3)
all_tensor.append(joints)
joints = torch.cat(all_tensor, axis=0)
joints = joints.permute(1, 0)
dt = 1/30
# first steps is forward diff (t+1 - t) / dt
init_vel = (joints[:, 1:2] - joints[:, :1]) / dt
# middle steps are second order (t+1 - t-1) / 2dt
middle_vel = (joints[:, 2:] - joints[:, 0:-2]) / (2 * dt)
# last step is backward diff (t - t-1) / dt
final_vel = (joints[:, -1:] - joints[:, -2:-1]) / dt
#print(joints.shape, init_vel.shape, middle_vel.shape, final_vel.shape)
vel_seq = torch.cat([init_vel, middle_vel, final_vel], dim=1).permute(1, 0).reshape(n, 55, 3)
#print(vel_seq.shape)
#.permute(1, 0).reshape(n, 55, 3)
vel_seq_np = vel_seq.cpu().numpy()
vel_joints_np = np.linalg.norm(vel_seq_np, axis=2) # n * 55
all_list.append(vel_joints_np)
avg_vel = np.mean(np.concatenate(all_list, axis=0),axis=0) # 55
np.save(save_path, avg_vel)
def build_cache(self, preloaded_dir):
logger.info(f"Audio bit rate: {self.args.audio_fps}")
logger.info("Reading data '{}'...".format(self.data_dir))
logger.info("Creating the dataset cache...")
if self.args.new_cache:
if os.path.exists(preloaded_dir):
shutil.rmtree(preloaded_dir)
if os.path.exists(preloaded_dir):
logger.info("Found the cache {}".format(preloaded_dir))
elif self.loader_type == "test":
self.cache_generation(
preloaded_dir, True,
0, 0,
is_test=True)
else:
self.cache_generation(
preloaded_dir, self.args.disable_filtering,
self.args.clean_first_seconds, self.args.clean_final_seconds,
is_test=False)
def __len__(self):
return self.n_samples
def cache_generation(self, out_lmdb_dir, disable_filtering, clean_first_seconds, clean_final_seconds, is_test=False):
# if "wav2vec2" in self.args.audio_rep:
# self.wav2vec_model = Wav2Vec2Model.from_pretrained(f"{self.args.data_path_1}/hub/transformer/wav2vec2-base-960h")
# self.wav2vec_model.feature_extractor._freeze_parameters()
# self.wav2vec_model = self.wav2vec_model.cuda()
# self.wav2vec_model.eval()
self.n_out_samples = 0
# create db for samples
if not os.path.exists(out_lmdb_dir): os.makedirs(out_lmdb_dir)
dst_lmdb_env = lmdb.open(out_lmdb_dir, map_size= int(1024 ** 3 * 50))# 50G
n_filtered_out = defaultdict(int)
for index, file_name in self.selected_file.iterrows():
f_name = file_name["id"]
ext = ".npz" if "smplx" in self.args.pose_rep else ".bvh"
pose_file = self.data_dir + self.args.pose_rep + "/" + f_name + ext
pose_each_file = []
trans_each_file = []
shape_each_file = []
audio_each_file = []
facial_each_file = []
word_each_file = []
emo_each_file = []
sem_each_file = []
vid_each_file = []
id_pose = f_name #1_wayne_0_1_1
logger.info(colored(f"# ---- Building cache for Pose {id_pose} ---- #", "blue"))
if "smplx" in self.args.pose_rep:
pose_data = np.load(pose_file, allow_pickle=True)
assert 30%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 30'
stride = int(30/self.args.pose_fps)
pose_each_file = pose_data["poses"][::stride] * self.joint_mask
trans_each_file = pose_data["trans"][::stride]
shape_each_file = np.repeat(pose_data["betas"].reshape(1, 300), pose_each_file.shape[0], axis=0)
if self.args.facial_rep is not None:
logger.info(f"# ---- Building cache for Facial {id_pose} and Pose {id_pose} ---- #")
facial_each_file = pose_data["expressions"][::stride]
if self.args.facial_norm:
facial_each_file = (facial_each_file - self.mean_facial) / self.std_facial
else:
assert 120%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 120'
stride = int(120/self.args.pose_fps)
with open(pose_file, "r") as pose_data:
for j, line in enumerate(pose_data.readlines()):
if j < 431: continue
if j%stride != 0:continue
data = np.fromstring(line, dtype=float, sep=" ")
rot_data = rc.euler_angles_to_matrix(torch.from_numpy(np.deg2rad(data)).reshape(-1, self.joints,3), "XYZ")
rot_data = rc.matrix_to_axis_angle(rot_data).reshape(-1, self.joints*3)
rot_data = rot_data.numpy() * self.joint_mask
pose_each_file.append(rot_data)
trans_each_file.append(data[:3])
pose_each_file = np.array(pose_each_file)
# print(pose_each_file.shape)
trans_each_file = np.array(trans_each_file)
shape_each_file = np.repeat(np.array(-1).reshape(1, 1), pose_each_file.shape[0], axis=0)
if self.args.facial_rep is not None:
logger.info(f"# ---- Building cache for Facial {id_pose} and Pose {id_pose} ---- #")
facial_file = pose_file.replace(self.args.pose_rep, self.args.facial_rep).replace("bvh", "json")
assert 60%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 120'
stride = int(60/self.args.pose_fps)
if not os.path.exists(facial_file):
logger.warning(f"# ---- file not found for Facial {id_pose}, skip all files with the same id ---- #")
self.selected_file = self.selected_file.drop(self.selected_file[self.selected_file['id'] == id_pose].index)
continue
with open(facial_file, 'r') as facial_data_file:
facial_data = json.load(facial_data_file)
for j, frame_data in enumerate(facial_data['frames']):
if j%stride != 0:continue
facial_each_file.append(frame_data['weights'])
facial_each_file = np.array(facial_each_file)
if self.args.facial_norm:
facial_each_file = (facial_each_file - self.mean_facial) / self.std_facial
if self.args.id_rep is not None:
vid_each_file = np.repeat(np.array(int(f_name.split("_")[0])-1).reshape(1, 1), pose_each_file.shape[0], axis=0)
if self.args.audio_rep is not None:
logger.info(f"# ---- Building cache for Audio {id_pose} and Pose {id_pose} ---- #")
audio_file = pose_file.replace(self.args.pose_rep, 'wave16k').replace(ext, ".wav")
if not os.path.exists(audio_file):
logger.warning(f"# ---- file not found for Audio {id_pose}, skip all files with the same id ---- #")
self.selected_file = self.selected_file.drop(self.selected_file[self.selected_file['id'] == id_pose].index)
continue
audio_each_file, sr = librosa.load(audio_file)
audio_each_file = librosa.resample(audio_each_file, orig_sr=sr, target_sr=self.args.audio_sr)
if self.args.audio_rep == "onset+amplitude":
from numpy.lib import stride_tricks
frame_length = 1024
# hop_length = 512
shape = (audio_each_file.shape[-1] - frame_length + 1, frame_length)
strides = (audio_each_file.strides[-1], audio_each_file.strides[-1])
rolling_view = stride_tricks.as_strided(audio_each_file, shape=shape, strides=strides)
amplitude_envelope = np.max(np.abs(rolling_view), axis=1)
# pad the last frame_length-1 samples
amplitude_envelope = np.pad(amplitude_envelope, (0, frame_length-1), mode='constant', constant_values=amplitude_envelope[-1])
audio_onset_f = librosa.onset.onset_detect(y=audio_each_file, sr=self.args.audio_sr, units='frames')
onset_array = np.zeros(len(audio_each_file), dtype=float)
onset_array[audio_onset_f] = 1.0
# print(amplitude_envelope.shape, audio_each_file.shape, onset_array.shape)
audio_each_file = np.concatenate([amplitude_envelope.reshape(-1, 1), onset_array.reshape(-1, 1)], axis=1)
elif self.args.audio_rep == "mfcc":
audio_each_file = librosa.feature.mfcc(audio_each_file, sr=self.args.audio_sr, n_mfcc=13, hop_length=int(self.args.audio_sr/self.args.audio_fps))
if self.args.audio_norm and self.args.audio_rep == "wave16k":
audio_each_file = (audio_each_file - self.mean_audio) / self.std_audio
time_offset = 0
if self.args.word_rep is not None:
logger.info(f"# ---- Building cache for Word {id_pose} and Pose {id_pose} ---- #")
word_file = f"{self.data_dir}{self.args.word_rep}/{id_pose}.TextGrid"
if not os.path.exists(word_file):
logger.warning(f"# ---- file not found for Word {id_pose}, skip all files with the same id ---- #")
self.selected_file = self.selected_file.drop(self.selected_file[self.selected_file['id'] == id_pose].index)
continue
tgrid = tg.TextGrid.fromFile(word_file)
if self.args.t_pre_encoder == "bert":
from transformers import AutoTokenizer, BertModel
tokenizer = AutoTokenizer.from_pretrained(self.args.data_path_1 + "hub/bert-base-uncased", local_files_only=True)
model = BertModel.from_pretrained(self.args.data_path_1 + "hub/bert-base-uncased", local_files_only=True).eval()
list_word = []
all_hidden = []
max_len = 400
last = 0
word_token_mapping = []
first = True
for i, word in enumerate(tgrid[0]):
last = i
if (i%max_len != 0) or (i==0):
if word.mark == "":
list_word.append(".")
else:
list_word.append(word.mark)
else:
max_counter = max_len
str_word = ' '.join(map(str, list_word))
if first:
global_len = 0
end = -1
offset_word = []
for k, wordvalue in enumerate(list_word):
start = end+1
end = start+len(wordvalue)
offset_word.append((start, end))
#print(offset_word)
token_scan = tokenizer.encode_plus(str_word, return_offsets_mapping=True)['offset_mapping']
#print(token_scan)
for start, end in offset_word:
sub_mapping = []
for i, (start_t, end_t) in enumerate(token_scan[1:-1]):
if int(start) <= int(start_t) and int(end_t) <= int(end):
#print(i+global_len)
sub_mapping.append(i+global_len)
word_token_mapping.append(sub_mapping)
#print(len(word_token_mapping))
global_len = word_token_mapping[-1][-1] + 1
list_word = []
if word.mark == "":
list_word.append(".")
else:
list_word.append(word.mark)
with torch.no_grad():
inputs = tokenizer(str_word, return_tensors="pt")
outputs = model(**inputs)
last_hidden_states = outputs.last_hidden_state.reshape(-1, 768).cpu().numpy()[1:-1, :]
all_hidden.append(last_hidden_states)
#list_word = list_word[:10]
if list_word == []:
pass
else:
if first:
global_len = 0
str_word = ' '.join(map(str, list_word))
end = -1
offset_word = []
for k, wordvalue in enumerate(list_word):
start = end+1
end = start+len(wordvalue)
offset_word.append((start, end))
#print(offset_word)
token_scan = tokenizer.encode_plus(str_word, return_offsets_mapping=True)['offset_mapping']
#print(token_scan)
for start, end in offset_word:
sub_mapping = []
for i, (start_t, end_t) in enumerate(token_scan[1:-1]):
if int(start) <= int(start_t) and int(end_t) <= int(end):
sub_mapping.append(i+global_len)
#print(sub_mapping)
word_token_mapping.append(sub_mapping)
#print(len(word_token_mapping))
with torch.no_grad():
inputs = tokenizer(str_word, return_tensors="pt")
outputs = model(**inputs)
last_hidden_states = outputs.last_hidden_state.reshape(-1, 768).cpu().numpy()[1:-1, :]
all_hidden.append(last_hidden_states)
last_hidden_states = np.concatenate(all_hidden, axis=0)
for i in range(pose_each_file.shape[0]):
found_flag = False
current_time = i/self.args.pose_fps + time_offset
j_last = 0
for j, word in enumerate(tgrid[0]):
word_n, word_s, word_e = word.mark, word.minTime, word.maxTime
if word_s<=current_time and current_time<=word_e:
if self.args.word_cache and self.args.t_pre_encoder == 'bert':
mapping_index = word_token_mapping[j]
#print(mapping_index, word_s, word_e)
s_t = np.linspace(word_s, word_e, len(mapping_index)+1)
#print(s_t)
for tt, t_sep in enumerate(s_t[1:]):
if current_time <= t_sep:
#if len(mapping_index) > 1: print(mapping_index[tt])
word_each_file.append(last_hidden_states[mapping_index[tt]])
break
else:
if word_n == " ":
word_each_file.append(self.lang_model.PAD_token)
else:
word_each_file.append(self.lang_model.get_word_index(word_n))
found_flag = True
j_last = j
break
else: continue
if not found_flag:
if self.args.word_cache and self.args.t_pre_encoder == 'bert':
word_each_file.append(last_hidden_states[j_last])
else:
word_each_file.append(self.lang_model.UNK_token)
word_each_file = np.array(word_each_file)
#print(word_each_file.shape)
if self.args.emo_rep is not None:
logger.info(f"# ---- Building cache for Emo {id_pose} and Pose {id_pose} ---- #")
rtype, start = int(id_pose.split('_')[3]), int(id_pose.split('_')[3])
if rtype == 0 or rtype == 2 or rtype == 4 or rtype == 6:
if start >= 1 and start <= 64:
score = 0
elif start >= 65 and start <= 72:
score = 1
elif start >= 73 and start <= 80:
score = 2
elif start >= 81 and start <= 86:
score = 3
elif start >= 87 and start <= 94:
score = 4
elif start >= 95 and start <= 102:
score = 5
elif start >= 103 and start <= 110:
score = 6
elif start >= 111 and start <= 118:
score = 7
else: pass
else:
# you may denote as unknown in the future
score = 0
emo_each_file = np.repeat(np.array(score).reshape(1, 1), pose_each_file.shape[0], axis=0)
#print(emo_each_file)
if self.args.sem_rep is not None:
logger.info(f"# ---- Building cache for Sem {id_pose} and Pose {id_pose} ---- #")
sem_file = f"{self.data_dir}{self.args.sem_rep}/{id_pose}.txt"
sem_all = pd.read_csv(sem_file,
sep='\t',
names=["name", "start_time", "end_time", "duration", "score", "keywords"])
# we adopt motion-level semantic score here.
for i in range(pose_each_file.shape[0]):
found_flag = False
for j, (start, end, score) in enumerate(zip(sem_all['start_time'],sem_all['end_time'], sem_all['score'])):
current_time = i/self.args.pose_fps + time_offset
if start<=current_time and current_time<=end:
sem_each_file.append(score)
found_flag=True
break
else: continue
if not found_flag: sem_each_file.append(0.)
sem_each_file = np.array(sem_each_file)
#print(sem_each_file)
filtered_result = self._sample_from_clip(
dst_lmdb_env,
audio_each_file, pose_each_file, trans_each_file, shape_each_file, facial_each_file, word_each_file,
vid_each_file, emo_each_file, sem_each_file,
disable_filtering, clean_first_seconds, clean_final_seconds, is_test,
)
for type in filtered_result.keys():
n_filtered_out[type] += filtered_result[type]
with dst_lmdb_env.begin() as txn:
logger.info(colored(f"no. of samples: {txn.stat()['entries']}", "cyan"))
n_total_filtered = 0
for type, n_filtered in n_filtered_out.items():
logger.info("{}: {}".format(type, n_filtered))
n_total_filtered += n_filtered
logger.info(colored("no. of excluded samples: {} ({:.1f}%)".format(
n_total_filtered, 100 * n_total_filtered / (txn.stat()["entries"] + n_total_filtered)), "cyan"))
dst_lmdb_env.sync()
dst_lmdb_env.close()
def _sample_from_clip(
self, dst_lmdb_env, audio_each_file, pose_each_file, trans_each_file, shape_each_file, facial_each_file, word_each_file,
vid_each_file, emo_each_file, sem_each_file,
disable_filtering, clean_first_seconds, clean_final_seconds, is_test,
):
"""
for data cleaning, we ignore the data for first and final n s
for test, we return all data
"""
# audio_start = int(self.alignment[0] * self.args.audio_fps)
# pose_start = int(self.alignment[1] * self.args.pose_fps)
#logger.info(f"before: {audio_each_file.shape} {pose_each_file.shape}")
# audio_each_file = audio_each_file[audio_start:]
# pose_each_file = pose_each_file[pose_start:]
# trans_each_file =
#logger.info(f"after alignment: {audio_each_file.shape} {pose_each_file.shape}")
#print(pose_each_file.shape)
round_seconds_skeleton = pose_each_file.shape[0] // self.args.pose_fps # assume 1500 frames / 15 fps = 100 s
#print(round_seconds_skeleton)
if audio_each_file != []:
round_seconds_audio = len(audio_each_file) // self.args.audio_fps # assume 16,000,00 / 16,000 = 100 s
if facial_each_file != []:
round_seconds_facial = facial_each_file.shape[0] // self.args.pose_fps
logger.info(f"audio: {round_seconds_audio}s, pose: {round_seconds_skeleton}s, facial: {round_seconds_facial}s")
round_seconds_skeleton = min(round_seconds_audio, round_seconds_skeleton, round_seconds_facial)
max_round = max(round_seconds_audio, round_seconds_skeleton, round_seconds_facial)
if round_seconds_skeleton != max_round:
logger.warning(f"reduce to {round_seconds_skeleton}s, ignore {max_round-round_seconds_skeleton}s")
else:
logger.info(f"pose: {round_seconds_skeleton}s, audio: {round_seconds_audio}s")
round_seconds_skeleton = min(round_seconds_audio, round_seconds_skeleton)
max_round = max(round_seconds_audio, round_seconds_skeleton)
if round_seconds_skeleton != max_round:
logger.warning(f"reduce to {round_seconds_skeleton}s, ignore {max_round-round_seconds_skeleton}s")
clip_s_t, clip_e_t = clean_first_seconds, round_seconds_skeleton - clean_final_seconds # assume [10, 90]s
clip_s_f_audio, clip_e_f_audio = self.args.audio_fps * clip_s_t, clip_e_t * self.args.audio_fps # [160,000,90*160,000]
clip_s_f_pose, clip_e_f_pose = clip_s_t * self.args.pose_fps, clip_e_t * self.args.pose_fps # [150,90*15]
for ratio in self.args.multi_length_training:
if is_test:# stride = length for test
cut_length = clip_e_f_pose - clip_s_f_pose
self.args.stride = cut_length
self.max_length = cut_length
else:
self.args.stride = int(ratio*self.ori_stride)
cut_length = int(self.ori_length*ratio)
num_subdivision = math.floor((clip_e_f_pose - clip_s_f_pose - cut_length) / self.args.stride) + 1
logger.info(f"pose from frame {clip_s_f_pose} to {clip_e_f_pose}, length {cut_length}")
logger.info(f"{num_subdivision} clips is expected with stride {self.args.stride}")
if audio_each_file != []:
audio_short_length = math.floor(cut_length / self.args.pose_fps * self.args.audio_fps)
"""
for audio sr = 16000, fps = 15, pose_length = 34,
audio short length = 36266.7 -> 36266
this error is fine.
"""
logger.info(f"audio from frame {clip_s_f_audio} to {clip_e_f_audio}, length {audio_short_length}")
n_filtered_out = defaultdict(int)
sample_pose_list = []
sample_audio_list = []
sample_facial_list = []
sample_shape_list = []
sample_word_list = []
sample_emo_list = []
sample_sem_list = []
sample_vid_list = []
sample_trans_list = []
for i in range(num_subdivision): # cut into around 2s chip, (self npose)
start_idx = clip_s_f_pose + i * self.args.stride
fin_idx = start_idx + cut_length
sample_pose = pose_each_file[start_idx:fin_idx]
sample_trans = trans_each_file[start_idx:fin_idx]
sample_shape = shape_each_file[start_idx:fin_idx]
# print(sample_pose.shape)
if self.args.audio_rep is not None:
audio_start = clip_s_f_audio + math.floor(i * self.args.stride * self.args.audio_fps / self.args.pose_fps)
audio_end = audio_start + audio_short_length
sample_audio = audio_each_file[audio_start:audio_end]
else:
sample_audio = np.array([-1])
sample_facial = facial_each_file[start_idx:fin_idx] if self.args.facial_rep is not None else np.array([-1])
sample_word = word_each_file[start_idx:fin_idx] if self.args.word_rep is not None else np.array([-1])
sample_emo = emo_each_file[start_idx:fin_idx] if self.args.emo_rep is not None else np.array([-1])
sample_sem = sem_each_file[start_idx:fin_idx] if self.args.sem_rep is not None else np.array([-1])
sample_vid = vid_each_file[start_idx:fin_idx] if self.args.id_rep is not None else np.array([-1])
if sample_pose.any() != None:
# filtering motion skeleton data
sample_pose, filtering_message = MotionPreprocessor(sample_pose).get()
is_correct_motion = (sample_pose != [])
if is_correct_motion or disable_filtering:
sample_pose_list.append(sample_pose)
sample_audio_list.append(sample_audio)
sample_facial_list.append(sample_facial)
sample_shape_list.append(sample_shape)
sample_word_list.append(sample_word)
sample_vid_list.append(sample_vid)
sample_emo_list.append(sample_emo)
sample_sem_list.append(sample_sem)
sample_trans_list.append(sample_trans)
else:
n_filtered_out[filtering_message] += 1
if len(sample_pose_list) > 0:
with dst_lmdb_env.begin(write=True) as txn:
for pose, audio, facial, shape, word, vid, emo, sem, trans in zip(
sample_pose_list,
sample_audio_list,
sample_facial_list,
sample_shape_list,
sample_word_list,
sample_vid_list,
sample_emo_list,
sample_sem_list,
sample_trans_list,):
k = "{:005}".format(self.n_out_samples).encode("ascii")
v = [pose, audio, facial, shape, word, emo, sem, vid, trans]
v = pyarrow.serialize(v).to_buffer()
txn.put(k, v)
self.n_out_samples += 1
return n_filtered_out
def __getitem__(self, idx):
with self.lmdb_env.begin(write=False) as txn:
key = "{:005}".format(idx).encode("ascii")
sample = txn.get(key)
sample = pyarrow.deserialize(sample)
tar_pose, in_audio, in_facial, in_shape, in_word, emo, sem, vid, trans = sample
#print(in_shape)
#vid = torch.from_numpy(vid).int()
emo = torch.from_numpy(emo).int()
sem = torch.from_numpy(sem).float()
in_audio = torch.from_numpy(in_audio).float()
in_word = torch.from_numpy(in_word).float() if self.args.word_cache else torch.from_numpy(in_word).int()
if self.loader_type == "test":
tar_pose = torch.from_numpy(tar_pose).float()
trans = torch.from_numpy(trans).float()
in_facial = torch.from_numpy(in_facial).float()
vid = torch.from_numpy(vid).float()
in_shape = torch.from_numpy(in_shape).float()
else:
in_shape = torch.from_numpy(in_shape).reshape((in_shape.shape[0], -1)).float()
trans = torch.from_numpy(trans).reshape((trans.shape[0], -1)).float()
vid = torch.from_numpy(vid).reshape((vid.shape[0], -1)).float()
tar_pose = torch.from_numpy(tar_pose).reshape((tar_pose.shape[0], -1)).float()
in_facial = torch.from_numpy(in_facial).reshape((in_facial.shape[0], -1)).float()
return {"pose":tar_pose, "audio":in_audio, "facial":in_facial, "beta": in_shape, "word":in_word, "id":vid, "emo":emo, "sem":sem, "trans":trans}
class MotionPreprocessor:
def __init__(self, skeletons):
self.skeletons = skeletons
#self.mean_pose = mean_pose
self.filtering_message = "PASS"
def get(self):
assert (self.skeletons is not None)
# filtering
if self.skeletons != []:
if self.check_pose_diff():
self.skeletons = []
self.filtering_message = "pose"
# elif self.check_spine_angle():
# self.skeletons = []
# self.filtering_message = "spine angle"
# elif self.check_static_motion():
# self.skeletons = []
# self.filtering_message = "motion"
# if self.skeletons != []:
# self.skeletons = self.skeletons.tolist()
# for i, frame in enumerate(self.skeletons):
# assert not np.isnan(self.skeletons[i]).any() # missing joints
return self.skeletons, self.filtering_message
def check_static_motion(self, verbose=True):
def get_variance(skeleton, joint_idx):
wrist_pos = skeleton[:, joint_idx]
variance = np.sum(np.var(wrist_pos, axis=0))
return variance
left_arm_var = get_variance(self.skeletons, 6)
right_arm_var = get_variance(self.skeletons, 9)
th = 0.0014 # exclude 13110
# th = 0.002 # exclude 16905
if left_arm_var < th and right_arm_var < th:
if verbose:
print("skip - check_static_motion left var {}, right var {}".format(left_arm_var, right_arm_var))
return True
else:
if verbose:
print("pass - check_static_motion left var {}, right var {}".format(left_arm_var, right_arm_var))
return False
def check_pose_diff(self, verbose=False):
# diff = np.abs(self.skeletons - self.mean_pose) # 186*1
# diff = np.mean(diff)
# # th = 0.017
# th = 0.02 #0.02 # exclude 3594
# if diff < th:
# if verbose:
# print("skip - check_pose_diff {:.5f}".format(diff))
# return True
# # th = 3.5 #0.02 # exclude 3594
# # if 3.5 < diff < 5:
# # if verbose:
# # print("skip - check_pose_diff {:.5f}".format(diff))
# # return True
# else:
# if verbose:
# print("pass - check_pose_diff {:.5f}".format(diff))
return False
def check_spine_angle(self, verbose=True):
def angle_between(v1, v2):
v1_u = v1 / np.linalg.norm(v1)
v2_u = v2 / np.linalg.norm(v2)
return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0))
angles = []
for i in range(self.skeletons.shape[0]):
spine_vec = self.skeletons[i, 1] - self.skeletons[i, 0]
angle = angle_between(spine_vec, [0, -1, 0])
angles.append(angle)
if np.rad2deg(max(angles)) > 30 or np.rad2deg(np.mean(angles)) > 20: # exclude 4495
# if np.rad2deg(max(angles)) > 20: # exclude 8270
if verbose:
print("skip - check_spine_angle {:.5f}, {:.5f}".format(max(angles), np.mean(angles)))
return True
else:
if verbose:
print("pass - check_spine_angle {:.5f}".format(max(angles)))
return False