Spaces:
Paused
Paused
import os | |
import numpy as np | |
import random | |
import torch | |
import shutil | |
import csv | |
import pprint | |
import pandas as pd | |
from loguru import logger | |
from collections import OrderedDict | |
import matplotlib.pyplot as plt | |
import pickle | |
import time | |
import hashlib | |
from scipy.spatial.transform import Rotation as R | |
from scipy.spatial.transform import Slerp | |
import cv2 | |
import utils.media | |
import utils.fast_render | |
def write_wav_names_to_csv(folder_path, csv_path): | |
""" | |
Traverse a folder and write the base names of all .wav files to a CSV file. | |
:param folder_path: Path to the folder to traverse. | |
:param csv_path: Path to the CSV file to write. | |
""" | |
# Open the CSV file for writing | |
with open(csv_path, mode='w', newline='') as file: | |
writer = csv.writer(file) | |
# Write the header | |
writer.writerow(['id', 'type']) | |
# Walk through the folder | |
for root, dirs, files in os.walk(folder_path): | |
for file in files: | |
# Check if the file ends with .wav | |
if file.endswith('.wav'): | |
# Extract the base name without the extension | |
base_name = os.path.splitext(file)[0] | |
# Write the base name and type to the CSV | |
writer.writerow([base_name, 'test']) | |
def resize_motion_sequence_tensor(sequence, target_frames): | |
""" | |
Resize a batch of 8-frame motion sequences to a specified number of frames using interpolation. | |
:param sequence: A (bs, 8, 165) tensor representing a batch of 8-frame motion sequences | |
:param target_frames: An integer representing the desired number of frames in the output sequences | |
:return: A (bs, target_frames, 165) tensor representing the resized motion sequences | |
""" | |
bs, _, _ = sequence.shape | |
# Create a time vector for the original and target sequences | |
original_time = torch.linspace(0, 1, 8, device=sequence.device).view(1, -1, 1) | |
target_time = torch.linspace(0, 1, target_frames, device=sequence.device).view(1, -1, 1) | |
# Permute the dimensions to (bs, 165, 8) for interpolation | |
sequence = sequence.permute(0, 2, 1) | |
# Interpolate each joint's motion to the target number of frames | |
resized_sequence = torch.nn.functional.interpolate(sequence, size=target_frames, mode='linear', align_corners=True) | |
# Permute the dimensions back to (bs, target_frames, 165) | |
resized_sequence = resized_sequence.permute(0, 2, 1) | |
return resized_sequence | |
def adjust_speed_according_to_ratio_tensor(chunks): | |
""" | |
Adjust the playback speed within a batch of 32-frame chunks according to random intervals. | |
:param chunks: A (bs, 32, 165) tensor representing a batch of motion chunks | |
:return: A (bs, 32, 165) tensor representing the motion chunks after speed adjustment | |
""" | |
bs, _, _ = chunks.shape | |
# Step 1: Divide the chunk into 4 equal intervals of 8 frames | |
equal_intervals = torch.chunk(chunks, 4, dim=1) | |
# Step 2: Randomly sample 3 points within the chunk to determine new intervals | |
success = 0 | |
all_success = [] | |
#sample_points = torch.sort(torch.randint(1, 32, (bs, 3), device=chunks.device), dim=1).values | |
# new_intervals_boundaries = torch.cat([torch.zeros((bs, 1), device=chunks.device, dtype=torch.long), sample_points, 32*torch.ones((bs, 1), device=chunks.device, dtype=torch.long)], dim=1) | |
while success != 1: | |
sample_points = sorted(random.sample(range(1, 32), 3)) | |
new_intervals_boundaries = [0] + sample_points + [32] | |
new_intervals = [chunks[0][new_intervals_boundaries[i]:new_intervals_boundaries[i+1]] for i in range(4)] | |
speed_ratios = [8 / len(new_interval) for new_interval in new_intervals] | |
# if any of the speed ratios is greater than 3 or less than 0.33, resample | |
if all([0.33 <= speed_ratio <= 3 for speed_ratio in speed_ratios]): | |
success += 1 | |
all_success.append(new_intervals_boundaries) | |
new_intervals_boundaries = torch.from_numpy(np.array(all_success)) | |
# print(new_intervals_boundaries) | |
all_shapes = new_intervals_boundaries[:, 1:] - new_intervals_boundaries[:, :-1] | |
# Step 4: Adjust the speed of each new interval | |
adjusted_intervals = [] | |
# print(equal_intervals[0].shape) | |
for i in range(4): | |
adjusted_interval = resize_motion_sequence_tensor(equal_intervals[i], all_shapes[0, i]) | |
adjusted_intervals.append(adjusted_interval) | |
# Step 5: Concatenate the adjusted intervals | |
adjusted_chunk = torch.cat(adjusted_intervals, dim=1) | |
return adjusted_chunk | |
def compute_exact_iou(bbox1, bbox2): | |
x1 = max(bbox1[0], bbox2[0]) | |
y1 = max(bbox1[1], bbox2[1]) | |
x2 = min(bbox1[0] + bbox1[2], bbox2[0] + bbox2[2]) | |
y2 = min(bbox1[1] + bbox1[3], bbox2[1] + bbox2[3]) | |
intersection_area = max(0, x2 - x1) * max(0, y2 - y1) | |
bbox1_area = bbox1[2] * bbox1[3] | |
bbox2_area = bbox2[2] * bbox2[3] | |
union_area = bbox1_area + bbox2_area - intersection_area | |
if union_area == 0: | |
return 0 | |
return intersection_area / union_area | |
def compute_iou(mask1, mask2): | |
# Compute the intersection | |
intersection = np.logical_and(mask1, mask2).sum() | |
# Compute the union | |
union = np.logical_or(mask1, mask2).sum() | |
# Compute the IoU | |
iou = intersection / union | |
return iou | |
def blankblending(all_frames, x, n): | |
return all_frames[x:x+n+1] | |
def synthesize_intermediate_frames_FILM(frame1, frame2, t, name, save_path): | |
import replicate | |
from urllib.request import urlretrieve | |
import os | |
cv2.imwrite(save_path[:-9]+name+"_frame1.png", frame1) | |
cv2.imwrite(save_path[:-9]+name+"_frame2.png", frame2) | |
os.environ["REPLICATE_API_TOKEN"] = "r8_He1rkPk9GAxNQ3LpOohK8sYw1SUfMYV3Fxk9b" | |
output = replicate.run( | |
"google-research/frame-interpolation:4f88a16a13673a8b589c18866e540556170a5bcb2ccdc12de556e800e9456d3d", | |
input={ | |
"frame1": open(save_path[:-9]+name+"_frame1.png", "rb"), | |
"frame2": open(save_path[:-9]+name+"_frame2.png", "rb"), | |
"times_to_interpolate": t, | |
} | |
) | |
print(output) | |
urlretrieve(output, save_path[:-9]+name+"_inter.mp4") | |
return load_video_as_numpy_array(save_path[:-9]+name+"_inter.mp4") | |
def load_video_as_numpy_array(video_path): | |
cap = cv2.VideoCapture(video_path) | |
# Using list comprehension to read frames and store in a list | |
frames = [frame for ret, frame in iter(lambda: cap.read(), (False, None)) if ret] | |
cap.release() | |
return np.array(frames) | |
def synthesize_intermediate_frames_bidirectional(all_frames, x, n): | |
frame1 = all_frames[x] | |
frame2 = all_frames[x + n] | |
# Convert the frames to grayscale | |
gray1 = cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY) | |
gray2 = cv2.cvtColor(frame2, cv2.COLOR_BGR2GRAY) | |
# Calculate the forward and backward optical flow | |
forward_flow = cv2.calcOpticalFlowFarneback(gray1, gray2, None, 0.5, 3, 15, 3, 5, 1.2, 0) | |
backward_flow = cv2.calcOpticalFlowFarneback(gray2, gray1, None, 0.5, 3, 15, 3, 5, 1.2, 0) | |
synthesized_frames = [] | |
for i in range(1, n): # For each intermediate frame between x and x + n | |
alpha = i / n # Interpolation factor | |
# Compute the intermediate forward and backward flow | |
intermediate_forward_flow = forward_flow * alpha | |
intermediate_backward_flow = backward_flow * (1 - alpha) | |
# Warp the frames based on the intermediate flow | |
h, w = frame1.shape[:2] | |
flow_map = np.column_stack((np.repeat(np.arange(h), w), np.tile(np.arange(w), h))) | |
forward_displacement = flow_map + intermediate_forward_flow.reshape(-1, 2) | |
backward_displacement = flow_map - intermediate_backward_flow.reshape(-1, 2) | |
# Use cv2.remap for efficient warping | |
remap_x_forward, remap_y_forward = np.clip(forward_displacement[:, 1], 0, w - 1), np.clip(forward_displacement[:, 0], 0, h - 1) | |
remap_x_backward, remap_y_backward = np.clip(backward_displacement[:, 1], 0, w - 1), np.clip(backward_displacement[:, 0], 0, h - 1) | |
warped_forward = cv2.remap(frame1, remap_x_forward.reshape(h, w).astype(np.float32), remap_y_forward.reshape(h, w).astype(np.float32), interpolation=cv2.INTER_LINEAR) | |
warped_backward = cv2.remap(frame2, remap_x_backward.reshape(h, w).astype(np.float32), remap_y_backward.reshape(h, w).astype(np.float32), interpolation=cv2.INTER_LINEAR) | |
# Blend the warped frames to generate the intermediate frame | |
intermediate_frame = cv2.addWeighted(warped_forward, 1 - alpha, warped_backward, alpha, 0) | |
synthesized_frames.append(intermediate_frame) | |
return synthesized_frames # Return n-2 synthesized intermediate frames | |
def linear_interpolate_frames(all_frames, x, n): | |
frame1 = all_frames[x] | |
frame2 = all_frames[x + n] | |
synthesized_frames = [] | |
for i in range(1, n): # For each intermediate frame between x and x + n | |
alpha = i / (n) # Correct interpolation factor | |
inter_frame = cv2.addWeighted(frame1, 1 - alpha, frame2, alpha, 0) | |
synthesized_frames.append(inter_frame) | |
return synthesized_frames[:-1] | |
def warp_frame(src_frame, flow): | |
h, w = flow.shape[:2] | |
flow_map = np.column_stack((np.repeat(np.arange(h), w), np.tile(np.arange(w), h))) | |
displacement = flow_map + flow.reshape(-1, 2) | |
# Extract x and y coordinates of the displacement | |
x_coords = np.clip(displacement[:, 1], 0, w - 1).reshape(h, w).astype(np.float32) | |
y_coords = np.clip(displacement[:, 0], 0, h - 1).reshape(h, w).astype(np.float32) | |
# Use cv2.remap for efficient warping | |
warped_frame = cv2.remap(src_frame, x_coords, y_coords, interpolation=cv2.INTER_LINEAR) | |
return warped_frame | |
def synthesize_intermediate_frames(all_frames, x, n): | |
# Calculate Optical Flow between the first and last frame | |
frame1 = cv2.cvtColor(all_frames[x], cv2.COLOR_BGR2GRAY) | |
frame2 = cv2.cvtColor(all_frames[x + n], cv2.COLOR_BGR2GRAY) | |
flow = cv2.calcOpticalFlowFarneback(frame1, frame2, None, 0.5, 3, 15, 3, 5, 1.2, 0) | |
synthesized_frames = [] | |
for i in range(1, n): # For each intermediate frame | |
alpha = i / (n) # Interpolation factor | |
intermediate_flow = flow * alpha # Interpolate the flow | |
intermediate_frame = warp_frame(all_frames[x], intermediate_flow) # Warp the first frame | |
synthesized_frames.append(intermediate_frame) | |
return synthesized_frames | |
def map2color(s): | |
m = hashlib.md5() | |
m.update(s.encode('utf-8')) | |
color_code = m.hexdigest()[:6] | |
return '#' + color_code | |
def euclidean_distance(a, b): | |
return np.sqrt(np.sum((a - b)**2)) | |
def adjust_array(x, k): | |
len_x = len(x) | |
len_k = len(k) | |
# If x is shorter than k, pad with zeros | |
if len_x < len_k: | |
return np.pad(x, (0, len_k - len_x), 'constant') | |
# If x is longer than k, truncate x | |
elif len_x > len_k: | |
return x[:len_k] | |
# If both are of same length | |
else: | |
return x | |
def onset_to_frame(onset_times, audio_length, fps): | |
# Calculate total number of frames for the given audio length | |
total_frames = int(audio_length * fps) | |
# Create an array of zeros of shape (total_frames,) | |
frame_array = np.zeros(total_frames, dtype=np.int32) | |
# For each onset time, calculate the frame number and set it to 1 | |
for onset in onset_times: | |
frame_num = int(onset * fps) | |
# Check if the frame number is within the array bounds | |
if 0 <= frame_num < total_frames: | |
frame_array[frame_num] = 1 | |
return frame_array | |
# def np_slerp(q1, q2, t): | |
# dot_product = np.sum(q1 * q2, axis=-1) | |
# q2_flip = np.where(dot_product[:, None] < 0, -q2, q2) # Flip quaternions where dot_product is negative | |
# dot_product = np.abs(dot_product) | |
# angle = np.arccos(np.clip(dot_product, -1, 1)) | |
# sin_angle = np.sin(angle) | |
# t1 = np.sin((1.0 - t) * angle) / sin_angle | |
# t2 = np.sin(t * angle) / sin_angle | |
# return t1 * q1 + t2 * q2_flip | |
def smooth_rotvec_animations(animation1, animation2, blend_frames): | |
""" | |
Smoothly transition between two animation clips using SLERP. | |
Parameters: | |
- animation1: The first animation clip, a numpy array of shape [n, k]. | |
- animation2: The second animation clip, a numpy array of shape [n, k]. | |
- blend_frames: Number of frames over which to blend the two animations. | |
Returns: | |
- A smoothly blended animation clip of shape [2n, k]. | |
""" | |
# Ensure blend_frames doesn't exceed the length of either animation | |
n1, k1 = animation1.shape | |
n2, k2 = animation2.shape | |
animation1 = animation1.reshape(n1, k1//3, 3) | |
animation2 = animation2.reshape(n2, k2//3, 3) | |
blend_frames = min(blend_frames, len(animation1), len(animation2)) | |
all_int = [] | |
for i in range(k1//3): | |
# Convert rotation vectors to quaternion for the overlapping part | |
q = R.from_rotvec(np.concatenate([animation1[0:1, i], animation2[-2:-1, i]], axis=0))#.as_quat() | |
# q2 = R.from_rotvec()#.as_quat() | |
times = [0, blend_frames * 2 - 1] | |
slerp = Slerp(times, q) | |
interpolated = slerp(np.arange(blend_frames * 2)) | |
interpolated_rotvecs = interpolated.as_rotvec() | |
all_int.append(interpolated_rotvecs) | |
interpolated_rotvecs = np.concatenate(all_int, axis=1) | |
# result = np.vstack((animation1[:-blend_frames], interpolated_rotvecs, animation2[blend_frames:])) | |
result = interpolated_rotvecs.reshape(2*n1, k1) | |
return result | |
def smooth_animations(animation1, animation2, blend_frames): | |
""" | |
Smoothly transition between two animation clips using linear interpolation. | |
Parameters: | |
- animation1: The first animation clip, a numpy array of shape [n, k]. | |
- animation2: The second animation clip, a numpy array of shape [n, k]. | |
- blend_frames: Number of frames over which to blend the two animations. | |
Returns: | |
- A smoothly blended animation clip of shape [2n, k]. | |
""" | |
# Ensure blend_frames doesn't exceed the length of either animation | |
blend_frames = min(blend_frames, len(animation1), len(animation2)) | |
# Extract overlapping sections | |
overlap_a1 = animation1[-blend_frames:-blend_frames+1, :] | |
overlap_a2 = animation2[blend_frames-1:blend_frames, :] | |
# Create blend weights for linear interpolation | |
alpha = np.linspace(0, 1, 2 * blend_frames).reshape(-1, 1) | |
# Linearly interpolate between overlapping sections | |
blended_overlap = overlap_a1 * (1 - alpha) + overlap_a2 * alpha | |
# Extend the animations to form the result with 2n frames | |
if blend_frames == len(animation1) and blend_frames == len(animation2): | |
result = blended_overlap | |
else: | |
before_blend = animation1[:-blend_frames] | |
after_blend = animation2[blend_frames:] | |
result = np.vstack((before_blend, blended_overlap, after_blend)) | |
return result | |
def interpolate_sequence(quaternions): | |
bs, n, j, _ = quaternions.shape | |
new_n = 2 * n | |
new_quaternions = torch.zeros((bs, new_n, j, 4), device=quaternions.device, dtype=quaternions.dtype) | |
for i in range(n): | |
q1 = quaternions[:, i, :, :] | |
new_quaternions[:, 2*i, :, :] = q1 | |
if i < n - 1: | |
q2 = quaternions[:, i + 1, :, :] | |
new_quaternions[:, 2*i + 1, :, :] = slerp(q1, q2, 0.5) | |
else: | |
# For the last point, duplicate the value | |
new_quaternions[:, 2*i + 1, :, :] = q1 | |
return new_quaternions | |
def quaternion_multiply(q1, q2): | |
w1, x1, y1, z1 = q1 | |
w2, x2, y2, z2 = q2 | |
w = w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2 | |
x = w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2 | |
y = w1 * y2 + y1 * w2 + z1 * x2 - x1 * z2 | |
z = w1 * z2 + z1 * w2 + x1 * y2 - y1 * x2 | |
return w, x, y, z | |
def quaternion_conjugate(q): | |
w, x, y, z = q | |
return (w, -x, -y, -z) | |
def slerp(q1, q2, t): | |
dot = torch.sum(q1 * q2, dim=-1, keepdim=True) | |
flip = (dot < 0).float() | |
q2 = (1 - flip * 2) * q2 | |
dot = dot * (1 - flip * 2) | |
DOT_THRESHOLD = 0.9995 | |
mask = (dot > DOT_THRESHOLD).float() | |
theta_0 = torch.acos(dot) | |
theta = theta_0 * t | |
q3 = q2 - q1 * dot | |
q3 = q3 / torch.norm(q3, dim=-1, keepdim=True) | |
interpolated = (torch.cos(theta) * q1 + torch.sin(theta) * q3) | |
return mask * (q1 + t * (q2 - q1)) + (1 - mask) * interpolated | |
def estimate_linear_velocity(data_seq, dt): | |
''' | |
Given some batched data sequences of T timesteps in the shape (B, T, ...), estimates | |
the velocity for the middle T-2 steps using a second order central difference scheme. | |
The first and last frames are with forward and backward first-order | |
differences, respectively | |
- h : step size | |
''' | |
# first steps is forward diff (t+1 - t) / dt | |
init_vel = (data_seq[:, 1:2] - data_seq[:, :1]) / dt | |
# middle steps are second order (t+1 - t-1) / 2dt | |
middle_vel = (data_seq[:, 2:] - data_seq[:, 0:-2]) / (2 * dt) | |
# last step is backward diff (t - t-1) / dt | |
final_vel = (data_seq[:, -1:] - data_seq[:, -2:-1]) / dt | |
vel_seq = torch.cat([init_vel, middle_vel, final_vel], dim=1) | |
return vel_seq | |
def velocity2position(data_seq, dt, init_pos): | |
res_trans = [] | |
for i in range(data_seq.shape[1]): | |
if i == 0: | |
res_trans.append(init_pos.unsqueeze(1)) | |
else: | |
res = data_seq[:, i-1:i] * dt + res_trans[-1] | |
res_trans.append(res) | |
return torch.cat(res_trans, dim=1) | |
def estimate_angular_velocity(rot_seq, dt): | |
''' | |
Given a batch of sequences of T rotation matrices, estimates angular velocity at T-2 steps. | |
Input sequence should be of shape (B, T, ..., 3, 3) | |
''' | |
# see https://en.wikipedia.org/wiki/Angular_velocity#Calculation_from_the_orientation_matrix | |
dRdt = estimate_linear_velocity(rot_seq, dt) | |
R = rot_seq | |
RT = R.transpose(-1, -2) | |
# compute skew-symmetric angular velocity tensor | |
w_mat = torch.matmul(dRdt, RT) | |
# pull out angular velocity vector by averaging symmetric entries | |
w_x = (-w_mat[..., 1, 2] + w_mat[..., 2, 1]) / 2.0 | |
w_y = (w_mat[..., 0, 2] - w_mat[..., 2, 0]) / 2.0 | |
w_z = (-w_mat[..., 0, 1] + w_mat[..., 1, 0]) / 2.0 | |
w = torch.stack([w_x, w_y, w_z], axis=-1) | |
return w | |
def image_from_bytes(image_bytes): | |
import matplotlib.image as mpimg | |
from io import BytesIO | |
return mpimg.imread(BytesIO(image_bytes), format='PNG') | |
def process_frame(i, vertices_all, vertices1_all, faces, output_dir, filenames): | |
import matplotlib | |
matplotlib.use('Agg') | |
import matplotlib.pyplot as plt | |
import trimesh | |
import pyrender | |
def deg_to_rad(degrees): | |
return degrees * np.pi / 180 | |
uniform_color = [220, 220, 220, 255] | |
resolution = (1000, 1000) | |
figsize = (10, 10) | |
fig, axs = plt.subplots( | |
nrows=1, | |
ncols=2, | |
figsize=(figsize[0] * 2, figsize[1] * 1) | |
) | |
axs = axs.flatten() | |
vertices = vertices_all[i] | |
vertices1 = vertices1_all[i] | |
filename = f"{output_dir}frame_{i}.png" | |
filenames.append(filename) | |
if i%100 == 0: | |
print('processed', i, 'frames') | |
#time_s = time.time() | |
#print(vertices.shape) | |
angle_rad = deg_to_rad(-2) | |
pose_camera = np.array([ | |
[1.0, 0.0, 0.0, 0.0], | |
[0.0, np.cos(angle_rad), -np.sin(angle_rad), 1.0], | |
[0.0, np.sin(angle_rad), np.cos(angle_rad), 5.0], | |
[0.0, 0.0, 0.0, 1.0] | |
]) | |
angle_rad = deg_to_rad(-30) | |
pose_light = np.array([ | |
[1.0, 0.0, 0.0, 0.0], | |
[0.0, np.cos(angle_rad), -np.sin(angle_rad), 0.0], | |
[0.0, np.sin(angle_rad), np.cos(angle_rad), 3.0], | |
[0.0, 0.0, 0.0, 1.0] | |
]) | |
for vtx_idx, vtx in enumerate([vertices, vertices1]): | |
trimesh_mesh = trimesh.Trimesh( | |
vertices=vtx, | |
faces=faces, | |
vertex_colors=uniform_color | |
) | |
mesh = pyrender.Mesh.from_trimesh( | |
trimesh_mesh, smooth=True | |
) | |
scene = pyrender.Scene() | |
scene.add(mesh) | |
camera = pyrender.OrthographicCamera(xmag=1.0, ymag=1.0) | |
scene.add(camera, pose=pose_camera) | |
light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=4.0) | |
scene.add(light, pose=pose_light) | |
renderer = pyrender.OffscreenRenderer(*resolution) | |
color, _ = renderer.render(scene) | |
axs[vtx_idx].imshow(color) | |
axs[vtx_idx].axis('off') | |
renderer.delete() | |
plt.savefig(filename, bbox_inches='tight') | |
plt.close(fig) | |
def generate_images(frames, vertices_all, vertices1_all, faces, output_dir, filenames): | |
import multiprocessing | |
# import trimesh | |
num_cores = multiprocessing.cpu_count() - 1 # This will get the number of cores on your machine. | |
# mesh = trimesh.Trimesh(vertices_all[0], faces) | |
# scene = mesh.scene() | |
# fov = scene.camera.fov.copy() | |
# fov[0] = 80.0 | |
# fov[1] = 60.0 | |
# camera_params = { | |
# 'fov': fov, | |
# 'resolution': scene.camera.resolution, | |
# 'focal': scene.camera.focal, | |
# 'z_near': scene.camera.z_near, | |
# "z_far": scene.camera.z_far, | |
# 'transform': scene.graph[scene.camera.name][0] | |
# } | |
# mesh1 = trimesh.Trimesh(vertices1_all[0], faces) | |
# scene1 = mesh1.scene() | |
# camera_params1 = { | |
# 'fov': fov, | |
# 'resolution': scene1.camera.resolution, | |
# 'focal': scene1.camera.focal, | |
# 'z_near': scene1.camera.z_near, | |
# "z_far": scene1.camera.z_far, | |
# 'transform': scene1.graph[scene1.camera.name][0] | |
# } | |
# Use a Pool to manage the processes | |
# print(num_cores) | |
# for i in range(frames): | |
# process_frame(i, vertices_all, vertices1_all, faces, output_dir, use_matplotlib, filenames, camera_params, camera_params1) | |
for i in range(frames): | |
process_frame(i, vertices_all, vertices1_all, faces, output_dir, filenames) | |
# progress = multiprocessing.Value('i', 0) | |
# lock = multiprocessing.Lock() | |
# with multiprocessing.Pool(num_cores) as pool: | |
# # pool.starmap(process_frame, [(i, vertices_all, vertices1_all, faces, output_dir, use_matplotlib, filenames, camera_params, camera_params1) for i in range(frames)]) | |
# pool.starmap( | |
# process_frame, | |
# [ | |
# (i, vertices_all, vertices1_all, faces, output_dir, filenames) | |
# for i in range(frames) | |
# ] | |
# ) | |
# progress = multiprocessing.Value('i', 0) | |
# lock = multiprocessing.Lock() | |
# with multiprocessing.Pool(num_cores) as pool: | |
# # pool.starmap(process_frame, [(i, vertices_all, vertices1_all, faces, output_dir, use_matplotlib, filenames, camera_params, camera_params1) for i in range(frames)]) | |
# pool.starmap( | |
# process_frame, | |
# [ | |
# (i, vertices_all, vertices1_all, faces, output_dir, filenames) | |
# for i in range(frames) | |
# ] | |
# ) | |
def render_one_sequence( | |
res_npz_path, | |
gt_npz_path, | |
output_dir, | |
audio_path, | |
model_folder="/data/datasets/smplx_models/", | |
model_type='smplx', | |
gender='NEUTRAL_2020', | |
ext='npz', | |
num_betas=300, | |
num_expression_coeffs=100, | |
use_face_contour=False, | |
use_matplotlib=False, | |
args=None): | |
import smplx | |
import matplotlib.pyplot as plt | |
import imageio | |
from tqdm import tqdm | |
import os | |
import numpy as np | |
import torch | |
import moviepy.editor as mp | |
import librosa | |
model = smplx.create(model_folder, model_type=model_type, | |
gender=gender, use_face_contour=use_face_contour, | |
num_betas=num_betas, | |
num_expression_coeffs=num_expression_coeffs, | |
ext=ext, use_pca=False).cuda() | |
#data_npz = np.load(f"{output_dir}{res_npz_path}.npz") | |
data_np_body = np.load(res_npz_path, allow_pickle=True) | |
gt_np_body = np.load(gt_npz_path, allow_pickle=True) | |
if not os.path.exists(output_dir): os.makedirs(output_dir) | |
filenames = [] | |
# if not use_matplotlib: | |
# import trimesh | |
#import pyrender | |
#!!! I only have Windows, the following lines of comments are feasible, but have not been tested on other platforms. | |
#from pyvirtualdisplay import Display | |
#display = Display(visible=0, size=(500, 500)) | |
#display.start() | |
faces = np.load(f"{model_folder}/smplx/SMPLX_NEUTRAL_2020.npz", allow_pickle=True)["f"] | |
seconds = 1 | |
#data_npz["jaw_pose"].shape[0] | |
n = data_np_body["poses"].shape[0] | |
beta = torch.from_numpy(data_np_body["betas"]).to(torch.float32).unsqueeze(0).cuda() | |
beta = beta.repeat(n, 1) | |
expression = torch.from_numpy(data_np_body["expressions"][:n]).to(torch.float32).cuda() | |
jaw_pose = torch.from_numpy(data_np_body["poses"][:n, 66:69]).to(torch.float32).cuda() | |
pose = torch.from_numpy(data_np_body["poses"][:n]).to(torch.float32).cuda() | |
transl = torch.from_numpy(data_np_body["trans"][:n]).to(torch.float32).cuda() | |
# print(beta.shape, expression.shape, jaw_pose.shape, pose.shape, transl.shape, pose[:,:3].shape) | |
output = model(betas=beta, transl=transl, expression=expression, jaw_pose=jaw_pose, | |
global_orient=pose[:,:3], body_pose=pose[:,3:21*3+3], left_hand_pose=pose[:,25*3:40*3], right_hand_pose=pose[:,40*3:55*3], | |
leye_pose=pose[:, 69:72], | |
reye_pose=pose[:, 72:75], | |
return_verts=True) | |
vertices_all = output["vertices"].cpu().detach().numpy() | |
beta1 = torch.from_numpy(gt_np_body["betas"]).to(torch.float32).unsqueeze(0).cuda() | |
expression1 = torch.from_numpy(gt_np_body["expressions"][:n]).to(torch.float32).cuda() | |
jaw_pose1 = torch.from_numpy(gt_np_body["poses"][:n,66:69]).to(torch.float32).cuda() | |
pose1 = torch.from_numpy(gt_np_body["poses"][:n]).to(torch.float32).cuda() | |
transl1 = torch.from_numpy(gt_np_body["trans"][:n]).to(torch.float32).cuda() | |
output1 = model(betas=beta1, transl=transl1, expression=expression1, jaw_pose=jaw_pose1, global_orient=pose1[:,:3], body_pose=pose1[:,3:21*3+3], left_hand_pose=pose1[:,25*3:40*3], right_hand_pose=pose1[:,40*3:55*3], | |
leye_pose=pose1[:, 69:72], | |
reye_pose=pose1[:, 72:75],return_verts=True) | |
vertices1_all = output1["vertices"].cpu().detach().numpy() | |
if args.debug: | |
seconds = 1 | |
else: | |
seconds = vertices_all.shape[0]//30 | |
silent_video_file_path = utils.fast_render.generate_silent_videos(args.render_video_fps, | |
args.render_video_width, | |
args.render_video_height, | |
args.render_concurrent_num, | |
args.render_tmp_img_filetype, | |
int(seconds*args.render_video_fps), | |
vertices_all, | |
vertices1_all, | |
faces, | |
output_dir) | |
#final_clip = f"{output_dir}{res_npz_path.split('/')[-1][4:-4]}.mp4" | |
base_filename_without_ext = os.path.splitext(os.path.basename(res_npz_path))[0] | |
final_clip = os.path.join(output_dir, f"{base_filename_without_ext}.mp4") | |
utils.media.add_audio_to_video(silent_video_file_path, audio_path, final_clip) | |
os.remove(silent_video_file_path) | |
def print_exp_info(args): | |
logger.info(pprint.pformat(vars(args))) | |
logger.info(f"# ------------ {args.name} ----------- #") | |
logger.info("PyTorch version: {}".format(torch.__version__)) | |
logger.info("CUDA version: {}".format(torch.version.cuda)) | |
logger.info("{} GPUs".format(torch.cuda.device_count())) | |
logger.info(f"Random Seed: {args.random_seed}") | |
def args2csv(args, get_head=False, list4print=[]): | |
for k, v in args.items(): | |
if isinstance(args[k], dict): | |
args2csv(args[k], get_head, list4print) | |
else: list4print.append(k) if get_head else list4print.append(v) | |
return list4print | |
class EpochTracker: | |
def __init__(self, metric_names, metric_directions): | |
assert len(metric_names) == len(metric_directions), "Metric names and directions should have the same length" | |
self.metric_names = metric_names | |
self.states = ['train', 'val', 'test'] | |
self.types = ['last', 'best'] | |
self.values = {name: {state: {type_: {'value': np.inf if not is_higher_better else -np.inf, 'epoch': 0} | |
for type_ in self.types} | |
for state in self.states} | |
for name, is_higher_better in zip(metric_names, metric_directions)} | |
self.loss_meters = {name: {state: AverageMeter(f"{name}_{state}") | |
for state in self.states} | |
for name in metric_names} | |
self.is_higher_better = {name: direction for name, direction in zip(metric_names, metric_directions)} | |
self.train_history = {name: [] for name in metric_names} | |
self.val_history = {name: [] for name in metric_names} | |
def update_meter(self, name, state, value): | |
self.loss_meters[name][state].update(value) | |
def update_values(self, name, state, epoch): | |
value_avg = self.loss_meters[name][state].avg | |
new_best = False | |
if ((value_avg < self.values[name][state]['best']['value'] and not self.is_higher_better[name]) or | |
(value_avg > self.values[name][state]['best']['value'] and self.is_higher_better[name])): | |
self.values[name][state]['best']['value'] = value_avg | |
self.values[name][state]['best']['epoch'] = epoch | |
new_best = True | |
self.values[name][state]['last']['value'] = value_avg | |
self.values[name][state]['last']['epoch'] = epoch | |
return new_best | |
def get(self, name, state, type_): | |
return self.values[name][state][type_] | |
def reset(self): | |
for name in self.metric_names: | |
for state in self.states: | |
self.loss_meters[name][state].reset() | |
def flatten_values(self): | |
flat_dict = {} | |
for name in self.metric_names: | |
for state in self.states: | |
for type_ in self.types: | |
value_key = f"{name}_{state}_{type_}" | |
epoch_key = f"{name}_{state}_{type_}_epoch" | |
flat_dict[value_key] = self.values[name][state][type_]['value'] | |
flat_dict[epoch_key] = self.values[name][state][type_]['epoch'] | |
return flat_dict | |
def update_and_plot(self, name, epoch, save_path): | |
new_best_train = self.update_values(name, 'train', epoch) | |
new_best_val = self.update_values(name, 'val', epoch) | |
self.train_history[name].append(self.loss_meters[name]['train'].avg) | |
self.val_history[name].append(self.loss_meters[name]['val'].avg) | |
train_values = self.train_history[name] | |
val_values = self.val_history[name] | |
epochs = list(range(1, len(train_values) + 1)) | |
plt.figure(figsize=(10, 6)) | |
plt.plot(epochs, train_values, label='Train') | |
plt.plot(epochs, val_values, label='Val') | |
plt.title(f'Train vs Val {name} over epochs') | |
plt.xlabel('Epochs') | |
plt.ylabel(name) | |
plt.legend() | |
plt.savefig(save_path) | |
plt.close() | |
return new_best_train, new_best_val | |
def record_trial(args, tracker): | |
""" | |
1. record notes, score, env_name, experments_path, | |
""" | |
csv_path = args.out_path + "custom/" +args.csv_name+".csv" | |
all_print_dict = vars(args) | |
all_print_dict.update(tracker.flatten_values()) | |
if not os.path.exists(csv_path): | |
pd.DataFrame([all_print_dict]).to_csv(csv_path, index=False) | |
else: | |
df_existing = pd.read_csv(csv_path) | |
df_new = pd.DataFrame([all_print_dict]) | |
df_aligned = df_existing.append(df_new).fillna("") | |
df_aligned.to_csv(csv_path, index=False) | |
def set_random_seed(args): | |
os.environ['PYTHONHASHSEED'] = str(args.random_seed) | |
random.seed(args.random_seed) | |
np.random.seed(args.random_seed) | |
torch.manual_seed(args.random_seed) | |
torch.cuda.manual_seed_all(args.random_seed) | |
torch.cuda.manual_seed(args.random_seed) | |
torch.backends.cudnn.deterministic = args.deterministic #args.CUDNN_DETERMINISTIC | |
torch.backends.cudnn.benchmark = args.benchmark | |
torch.backends.cudnn.enabled = args.cudnn_enabled | |
def save_checkpoints(save_path, model, opt=None, epoch=None, lrs=None): | |
if lrs is not None: | |
states = { 'model_state': model.state_dict(), | |
'epoch': epoch + 1, | |
'opt_state': opt.state_dict(), | |
'lrs':lrs.state_dict(),} | |
elif opt is not None: | |
states = { 'model_state': model.state_dict(), | |
'epoch': epoch + 1, | |
'opt_state': opt.state_dict(),} | |
else: | |
states = { 'model_state': model.state_dict(),} | |
torch.save(states, save_path) | |
def load_checkpoints(model, save_path, load_name='model'): | |
states = torch.load(save_path) | |
new_weights = OrderedDict() | |
flag=False | |
for k, v in states['model_state'].items(): | |
#print(k) | |
if "module" not in k: | |
break | |
else: | |
new_weights[k[7:]]=v | |
flag=True | |
if flag: | |
try: | |
model.load_state_dict(new_weights) | |
except: | |
#print(states['model_state']) | |
model.load_state_dict(states['model_state']) | |
else: | |
model.load_state_dict(states['model_state']) | |
logger.info(f"load self-pretrained checkpoints for {load_name}") | |
def model_complexity(model, args): | |
from ptflops import get_model_complexity_info | |
flops, params = get_model_complexity_info(model, (args.T_GLOBAL._DIM, args.TRAIN.CROP, args.TRAIN), | |
as_strings=False, print_per_layer_stat=False) | |
logging.info('{:<30} {:<8} BFlops'.format('Computational complexity: ', flops / 1e9)) | |
logging.info('{:<30} {:<8} MParams'.format('Number of parameters: ', params / 1e6)) | |
class AverageMeter(object): | |
"""Computes and stores the average and current value""" | |
def __init__(self, name, fmt=':f'): | |
self.name = name | |
self.fmt = fmt | |
self.reset() | |
def reset(self): | |
self.val = 0 | |
self.avg = 0 | |
self.sum = 0 | |
self.count = 0 | |
def update(self, val, n=1): | |
self.val = val | |
self.sum += val * n | |
self.count += n | |
self.avg = self.sum / self.count | |
def __str__(self): | |
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' | |
return fmtstr.format(**self.__dict__) | |