EMAGE / utils /other_tools.py
H-Liu1997's picture
Upload folder using huggingface_hub
2d47d90 verified
import os
import numpy as np
import random
import torch
import shutil
import csv
import pprint
import pandas as pd
from loguru import logger
from collections import OrderedDict
import matplotlib.pyplot as plt
import pickle
import time
import hashlib
from scipy.spatial.transform import Rotation as R
from scipy.spatial.transform import Slerp
import cv2
import utils.media
import utils.fast_render
def write_wav_names_to_csv(folder_path, csv_path):
"""
Traverse a folder and write the base names of all .wav files to a CSV file.
:param folder_path: Path to the folder to traverse.
:param csv_path: Path to the CSV file to write.
"""
# Open the CSV file for writing
with open(csv_path, mode='w', newline='') as file:
writer = csv.writer(file)
# Write the header
writer.writerow(['id', 'type'])
# Walk through the folder
for root, dirs, files in os.walk(folder_path):
for file in files:
# Check if the file ends with .wav
if file.endswith('.wav'):
# Extract the base name without the extension
base_name = os.path.splitext(file)[0]
# Write the base name and type to the CSV
writer.writerow([base_name, 'test'])
def resize_motion_sequence_tensor(sequence, target_frames):
"""
Resize a batch of 8-frame motion sequences to a specified number of frames using interpolation.
:param sequence: A (bs, 8, 165) tensor representing a batch of 8-frame motion sequences
:param target_frames: An integer representing the desired number of frames in the output sequences
:return: A (bs, target_frames, 165) tensor representing the resized motion sequences
"""
bs, _, _ = sequence.shape
# Create a time vector for the original and target sequences
original_time = torch.linspace(0, 1, 8, device=sequence.device).view(1, -1, 1)
target_time = torch.linspace(0, 1, target_frames, device=sequence.device).view(1, -1, 1)
# Permute the dimensions to (bs, 165, 8) for interpolation
sequence = sequence.permute(0, 2, 1)
# Interpolate each joint's motion to the target number of frames
resized_sequence = torch.nn.functional.interpolate(sequence, size=target_frames, mode='linear', align_corners=True)
# Permute the dimensions back to (bs, target_frames, 165)
resized_sequence = resized_sequence.permute(0, 2, 1)
return resized_sequence
def adjust_speed_according_to_ratio_tensor(chunks):
"""
Adjust the playback speed within a batch of 32-frame chunks according to random intervals.
:param chunks: A (bs, 32, 165) tensor representing a batch of motion chunks
:return: A (bs, 32, 165) tensor representing the motion chunks after speed adjustment
"""
bs, _, _ = chunks.shape
# Step 1: Divide the chunk into 4 equal intervals of 8 frames
equal_intervals = torch.chunk(chunks, 4, dim=1)
# Step 2: Randomly sample 3 points within the chunk to determine new intervals
success = 0
all_success = []
#sample_points = torch.sort(torch.randint(1, 32, (bs, 3), device=chunks.device), dim=1).values
# new_intervals_boundaries = torch.cat([torch.zeros((bs, 1), device=chunks.device, dtype=torch.long), sample_points, 32*torch.ones((bs, 1), device=chunks.device, dtype=torch.long)], dim=1)
while success != 1:
sample_points = sorted(random.sample(range(1, 32), 3))
new_intervals_boundaries = [0] + sample_points + [32]
new_intervals = [chunks[0][new_intervals_boundaries[i]:new_intervals_boundaries[i+1]] for i in range(4)]
speed_ratios = [8 / len(new_interval) for new_interval in new_intervals]
# if any of the speed ratios is greater than 3 or less than 0.33, resample
if all([0.33 <= speed_ratio <= 3 for speed_ratio in speed_ratios]):
success += 1
all_success.append(new_intervals_boundaries)
new_intervals_boundaries = torch.from_numpy(np.array(all_success))
# print(new_intervals_boundaries)
all_shapes = new_intervals_boundaries[:, 1:] - new_intervals_boundaries[:, :-1]
# Step 4: Adjust the speed of each new interval
adjusted_intervals = []
# print(equal_intervals[0].shape)
for i in range(4):
adjusted_interval = resize_motion_sequence_tensor(equal_intervals[i], all_shapes[0, i])
adjusted_intervals.append(adjusted_interval)
# Step 5: Concatenate the adjusted intervals
adjusted_chunk = torch.cat(adjusted_intervals, dim=1)
return adjusted_chunk
def compute_exact_iou(bbox1, bbox2):
x1 = max(bbox1[0], bbox2[0])
y1 = max(bbox1[1], bbox2[1])
x2 = min(bbox1[0] + bbox1[2], bbox2[0] + bbox2[2])
y2 = min(bbox1[1] + bbox1[3], bbox2[1] + bbox2[3])
intersection_area = max(0, x2 - x1) * max(0, y2 - y1)
bbox1_area = bbox1[2] * bbox1[3]
bbox2_area = bbox2[2] * bbox2[3]
union_area = bbox1_area + bbox2_area - intersection_area
if union_area == 0:
return 0
return intersection_area / union_area
def compute_iou(mask1, mask2):
# Compute the intersection
intersection = np.logical_and(mask1, mask2).sum()
# Compute the union
union = np.logical_or(mask1, mask2).sum()
# Compute the IoU
iou = intersection / union
return iou
def blankblending(all_frames, x, n):
return all_frames[x:x+n+1]
def synthesize_intermediate_frames_FILM(frame1, frame2, t, name, save_path):
import replicate
from urllib.request import urlretrieve
import os
cv2.imwrite(save_path[:-9]+name+"_frame1.png", frame1)
cv2.imwrite(save_path[:-9]+name+"_frame2.png", frame2)
os.environ["REPLICATE_API_TOKEN"] = "r8_He1rkPk9GAxNQ3LpOohK8sYw1SUfMYV3Fxk9b"
output = replicate.run(
"google-research/frame-interpolation:4f88a16a13673a8b589c18866e540556170a5bcb2ccdc12de556e800e9456d3d",
input={
"frame1": open(save_path[:-9]+name+"_frame1.png", "rb"),
"frame2": open(save_path[:-9]+name+"_frame2.png", "rb"),
"times_to_interpolate": t,
}
)
print(output)
urlretrieve(output, save_path[:-9]+name+"_inter.mp4")
return load_video_as_numpy_array(save_path[:-9]+name+"_inter.mp4")
def load_video_as_numpy_array(video_path):
cap = cv2.VideoCapture(video_path)
# Using list comprehension to read frames and store in a list
frames = [frame for ret, frame in iter(lambda: cap.read(), (False, None)) if ret]
cap.release()
return np.array(frames)
def synthesize_intermediate_frames_bidirectional(all_frames, x, n):
frame1 = all_frames[x]
frame2 = all_frames[x + n]
# Convert the frames to grayscale
gray1 = cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(frame2, cv2.COLOR_BGR2GRAY)
# Calculate the forward and backward optical flow
forward_flow = cv2.calcOpticalFlowFarneback(gray1, gray2, None, 0.5, 3, 15, 3, 5, 1.2, 0)
backward_flow = cv2.calcOpticalFlowFarneback(gray2, gray1, None, 0.5, 3, 15, 3, 5, 1.2, 0)
synthesized_frames = []
for i in range(1, n): # For each intermediate frame between x and x + n
alpha = i / n # Interpolation factor
# Compute the intermediate forward and backward flow
intermediate_forward_flow = forward_flow * alpha
intermediate_backward_flow = backward_flow * (1 - alpha)
# Warp the frames based on the intermediate flow
h, w = frame1.shape[:2]
flow_map = np.column_stack((np.repeat(np.arange(h), w), np.tile(np.arange(w), h)))
forward_displacement = flow_map + intermediate_forward_flow.reshape(-1, 2)
backward_displacement = flow_map - intermediate_backward_flow.reshape(-1, 2)
# Use cv2.remap for efficient warping
remap_x_forward, remap_y_forward = np.clip(forward_displacement[:, 1], 0, w - 1), np.clip(forward_displacement[:, 0], 0, h - 1)
remap_x_backward, remap_y_backward = np.clip(backward_displacement[:, 1], 0, w - 1), np.clip(backward_displacement[:, 0], 0, h - 1)
warped_forward = cv2.remap(frame1, remap_x_forward.reshape(h, w).astype(np.float32), remap_y_forward.reshape(h, w).astype(np.float32), interpolation=cv2.INTER_LINEAR)
warped_backward = cv2.remap(frame2, remap_x_backward.reshape(h, w).astype(np.float32), remap_y_backward.reshape(h, w).astype(np.float32), interpolation=cv2.INTER_LINEAR)
# Blend the warped frames to generate the intermediate frame
intermediate_frame = cv2.addWeighted(warped_forward, 1 - alpha, warped_backward, alpha, 0)
synthesized_frames.append(intermediate_frame)
return synthesized_frames # Return n-2 synthesized intermediate frames
def linear_interpolate_frames(all_frames, x, n):
frame1 = all_frames[x]
frame2 = all_frames[x + n]
synthesized_frames = []
for i in range(1, n): # For each intermediate frame between x and x + n
alpha = i / (n) # Correct interpolation factor
inter_frame = cv2.addWeighted(frame1, 1 - alpha, frame2, alpha, 0)
synthesized_frames.append(inter_frame)
return synthesized_frames[:-1]
def warp_frame(src_frame, flow):
h, w = flow.shape[:2]
flow_map = np.column_stack((np.repeat(np.arange(h), w), np.tile(np.arange(w), h)))
displacement = flow_map + flow.reshape(-1, 2)
# Extract x and y coordinates of the displacement
x_coords = np.clip(displacement[:, 1], 0, w - 1).reshape(h, w).astype(np.float32)
y_coords = np.clip(displacement[:, 0], 0, h - 1).reshape(h, w).astype(np.float32)
# Use cv2.remap for efficient warping
warped_frame = cv2.remap(src_frame, x_coords, y_coords, interpolation=cv2.INTER_LINEAR)
return warped_frame
def synthesize_intermediate_frames(all_frames, x, n):
# Calculate Optical Flow between the first and last frame
frame1 = cv2.cvtColor(all_frames[x], cv2.COLOR_BGR2GRAY)
frame2 = cv2.cvtColor(all_frames[x + n], cv2.COLOR_BGR2GRAY)
flow = cv2.calcOpticalFlowFarneback(frame1, frame2, None, 0.5, 3, 15, 3, 5, 1.2, 0)
synthesized_frames = []
for i in range(1, n): # For each intermediate frame
alpha = i / (n) # Interpolation factor
intermediate_flow = flow * alpha # Interpolate the flow
intermediate_frame = warp_frame(all_frames[x], intermediate_flow) # Warp the first frame
synthesized_frames.append(intermediate_frame)
return synthesized_frames
def map2color(s):
m = hashlib.md5()
m.update(s.encode('utf-8'))
color_code = m.hexdigest()[:6]
return '#' + color_code
def euclidean_distance(a, b):
return np.sqrt(np.sum((a - b)**2))
def adjust_array(x, k):
len_x = len(x)
len_k = len(k)
# If x is shorter than k, pad with zeros
if len_x < len_k:
return np.pad(x, (0, len_k - len_x), 'constant')
# If x is longer than k, truncate x
elif len_x > len_k:
return x[:len_k]
# If both are of same length
else:
return x
def onset_to_frame(onset_times, audio_length, fps):
# Calculate total number of frames for the given audio length
total_frames = int(audio_length * fps)
# Create an array of zeros of shape (total_frames,)
frame_array = np.zeros(total_frames, dtype=np.int32)
# For each onset time, calculate the frame number and set it to 1
for onset in onset_times:
frame_num = int(onset * fps)
# Check if the frame number is within the array bounds
if 0 <= frame_num < total_frames:
frame_array[frame_num] = 1
return frame_array
# def np_slerp(q1, q2, t):
# dot_product = np.sum(q1 * q2, axis=-1)
# q2_flip = np.where(dot_product[:, None] < 0, -q2, q2) # Flip quaternions where dot_product is negative
# dot_product = np.abs(dot_product)
# angle = np.arccos(np.clip(dot_product, -1, 1))
# sin_angle = np.sin(angle)
# t1 = np.sin((1.0 - t) * angle) / sin_angle
# t2 = np.sin(t * angle) / sin_angle
# return t1 * q1 + t2 * q2_flip
def smooth_rotvec_animations(animation1, animation2, blend_frames):
"""
Smoothly transition between two animation clips using SLERP.
Parameters:
- animation1: The first animation clip, a numpy array of shape [n, k].
- animation2: The second animation clip, a numpy array of shape [n, k].
- blend_frames: Number of frames over which to blend the two animations.
Returns:
- A smoothly blended animation clip of shape [2n, k].
"""
# Ensure blend_frames doesn't exceed the length of either animation
n1, k1 = animation1.shape
n2, k2 = animation2.shape
animation1 = animation1.reshape(n1, k1//3, 3)
animation2 = animation2.reshape(n2, k2//3, 3)
blend_frames = min(blend_frames, len(animation1), len(animation2))
all_int = []
for i in range(k1//3):
# Convert rotation vectors to quaternion for the overlapping part
q = R.from_rotvec(np.concatenate([animation1[0:1, i], animation2[-2:-1, i]], axis=0))#.as_quat()
# q2 = R.from_rotvec()#.as_quat()
times = [0, blend_frames * 2 - 1]
slerp = Slerp(times, q)
interpolated = slerp(np.arange(blend_frames * 2))
interpolated_rotvecs = interpolated.as_rotvec()
all_int.append(interpolated_rotvecs)
interpolated_rotvecs = np.concatenate(all_int, axis=1)
# result = np.vstack((animation1[:-blend_frames], interpolated_rotvecs, animation2[blend_frames:]))
result = interpolated_rotvecs.reshape(2*n1, k1)
return result
def smooth_animations(animation1, animation2, blend_frames):
"""
Smoothly transition between two animation clips using linear interpolation.
Parameters:
- animation1: The first animation clip, a numpy array of shape [n, k].
- animation2: The second animation clip, a numpy array of shape [n, k].
- blend_frames: Number of frames over which to blend the two animations.
Returns:
- A smoothly blended animation clip of shape [2n, k].
"""
# Ensure blend_frames doesn't exceed the length of either animation
blend_frames = min(blend_frames, len(animation1), len(animation2))
# Extract overlapping sections
overlap_a1 = animation1[-blend_frames:-blend_frames+1, :]
overlap_a2 = animation2[blend_frames-1:blend_frames, :]
# Create blend weights for linear interpolation
alpha = np.linspace(0, 1, 2 * blend_frames).reshape(-1, 1)
# Linearly interpolate between overlapping sections
blended_overlap = overlap_a1 * (1 - alpha) + overlap_a2 * alpha
# Extend the animations to form the result with 2n frames
if blend_frames == len(animation1) and blend_frames == len(animation2):
result = blended_overlap
else:
before_blend = animation1[:-blend_frames]
after_blend = animation2[blend_frames:]
result = np.vstack((before_blend, blended_overlap, after_blend))
return result
def interpolate_sequence(quaternions):
bs, n, j, _ = quaternions.shape
new_n = 2 * n
new_quaternions = torch.zeros((bs, new_n, j, 4), device=quaternions.device, dtype=quaternions.dtype)
for i in range(n):
q1 = quaternions[:, i, :, :]
new_quaternions[:, 2*i, :, :] = q1
if i < n - 1:
q2 = quaternions[:, i + 1, :, :]
new_quaternions[:, 2*i + 1, :, :] = slerp(q1, q2, 0.5)
else:
# For the last point, duplicate the value
new_quaternions[:, 2*i + 1, :, :] = q1
return new_quaternions
def quaternion_multiply(q1, q2):
w1, x1, y1, z1 = q1
w2, x2, y2, z2 = q2
w = w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2
x = w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2
y = w1 * y2 + y1 * w2 + z1 * x2 - x1 * z2
z = w1 * z2 + z1 * w2 + x1 * y2 - y1 * x2
return w, x, y, z
def quaternion_conjugate(q):
w, x, y, z = q
return (w, -x, -y, -z)
def slerp(q1, q2, t):
dot = torch.sum(q1 * q2, dim=-1, keepdim=True)
flip = (dot < 0).float()
q2 = (1 - flip * 2) * q2
dot = dot * (1 - flip * 2)
DOT_THRESHOLD = 0.9995
mask = (dot > DOT_THRESHOLD).float()
theta_0 = torch.acos(dot)
theta = theta_0 * t
q3 = q2 - q1 * dot
q3 = q3 / torch.norm(q3, dim=-1, keepdim=True)
interpolated = (torch.cos(theta) * q1 + torch.sin(theta) * q3)
return mask * (q1 + t * (q2 - q1)) + (1 - mask) * interpolated
def estimate_linear_velocity(data_seq, dt):
'''
Given some batched data sequences of T timesteps in the shape (B, T, ...), estimates
the velocity for the middle T-2 steps using a second order central difference scheme.
The first and last frames are with forward and backward first-order
differences, respectively
- h : step size
'''
# first steps is forward diff (t+1 - t) / dt
init_vel = (data_seq[:, 1:2] - data_seq[:, :1]) / dt
# middle steps are second order (t+1 - t-1) / 2dt
middle_vel = (data_seq[:, 2:] - data_seq[:, 0:-2]) / (2 * dt)
# last step is backward diff (t - t-1) / dt
final_vel = (data_seq[:, -1:] - data_seq[:, -2:-1]) / dt
vel_seq = torch.cat([init_vel, middle_vel, final_vel], dim=1)
return vel_seq
def velocity2position(data_seq, dt, init_pos):
res_trans = []
for i in range(data_seq.shape[1]):
if i == 0:
res_trans.append(init_pos.unsqueeze(1))
else:
res = data_seq[:, i-1:i] * dt + res_trans[-1]
res_trans.append(res)
return torch.cat(res_trans, dim=1)
def estimate_angular_velocity(rot_seq, dt):
'''
Given a batch of sequences of T rotation matrices, estimates angular velocity at T-2 steps.
Input sequence should be of shape (B, T, ..., 3, 3)
'''
# see https://en.wikipedia.org/wiki/Angular_velocity#Calculation_from_the_orientation_matrix
dRdt = estimate_linear_velocity(rot_seq, dt)
R = rot_seq
RT = R.transpose(-1, -2)
# compute skew-symmetric angular velocity tensor
w_mat = torch.matmul(dRdt, RT)
# pull out angular velocity vector by averaging symmetric entries
w_x = (-w_mat[..., 1, 2] + w_mat[..., 2, 1]) / 2.0
w_y = (w_mat[..., 0, 2] - w_mat[..., 2, 0]) / 2.0
w_z = (-w_mat[..., 0, 1] + w_mat[..., 1, 0]) / 2.0
w = torch.stack([w_x, w_y, w_z], axis=-1)
return w
def image_from_bytes(image_bytes):
import matplotlib.image as mpimg
from io import BytesIO
return mpimg.imread(BytesIO(image_bytes), format='PNG')
def process_frame(i, vertices_all, vertices1_all, faces, output_dir, filenames):
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import trimesh
import pyrender
def deg_to_rad(degrees):
return degrees * np.pi / 180
uniform_color = [220, 220, 220, 255]
resolution = (1000, 1000)
figsize = (10, 10)
fig, axs = plt.subplots(
nrows=1,
ncols=2,
figsize=(figsize[0] * 2, figsize[1] * 1)
)
axs = axs.flatten()
vertices = vertices_all[i]
vertices1 = vertices1_all[i]
filename = f"{output_dir}frame_{i}.png"
filenames.append(filename)
if i%100 == 0:
print('processed', i, 'frames')
#time_s = time.time()
#print(vertices.shape)
angle_rad = deg_to_rad(-2)
pose_camera = np.array([
[1.0, 0.0, 0.0, 0.0],
[0.0, np.cos(angle_rad), -np.sin(angle_rad), 1.0],
[0.0, np.sin(angle_rad), np.cos(angle_rad), 5.0],
[0.0, 0.0, 0.0, 1.0]
])
angle_rad = deg_to_rad(-30)
pose_light = np.array([
[1.0, 0.0, 0.0, 0.0],
[0.0, np.cos(angle_rad), -np.sin(angle_rad), 0.0],
[0.0, np.sin(angle_rad), np.cos(angle_rad), 3.0],
[0.0, 0.0, 0.0, 1.0]
])
for vtx_idx, vtx in enumerate([vertices, vertices1]):
trimesh_mesh = trimesh.Trimesh(
vertices=vtx,
faces=faces,
vertex_colors=uniform_color
)
mesh = pyrender.Mesh.from_trimesh(
trimesh_mesh, smooth=True
)
scene = pyrender.Scene()
scene.add(mesh)
camera = pyrender.OrthographicCamera(xmag=1.0, ymag=1.0)
scene.add(camera, pose=pose_camera)
light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=4.0)
scene.add(light, pose=pose_light)
renderer = pyrender.OffscreenRenderer(*resolution)
color, _ = renderer.render(scene)
axs[vtx_idx].imshow(color)
axs[vtx_idx].axis('off')
renderer.delete()
plt.savefig(filename, bbox_inches='tight')
plt.close(fig)
def generate_images(frames, vertices_all, vertices1_all, faces, output_dir, filenames):
import multiprocessing
# import trimesh
num_cores = multiprocessing.cpu_count() - 1 # This will get the number of cores on your machine.
# mesh = trimesh.Trimesh(vertices_all[0], faces)
# scene = mesh.scene()
# fov = scene.camera.fov.copy()
# fov[0] = 80.0
# fov[1] = 60.0
# camera_params = {
# 'fov': fov,
# 'resolution': scene.camera.resolution,
# 'focal': scene.camera.focal,
# 'z_near': scene.camera.z_near,
# "z_far": scene.camera.z_far,
# 'transform': scene.graph[scene.camera.name][0]
# }
# mesh1 = trimesh.Trimesh(vertices1_all[0], faces)
# scene1 = mesh1.scene()
# camera_params1 = {
# 'fov': fov,
# 'resolution': scene1.camera.resolution,
# 'focal': scene1.camera.focal,
# 'z_near': scene1.camera.z_near,
# "z_far": scene1.camera.z_far,
# 'transform': scene1.graph[scene1.camera.name][0]
# }
# Use a Pool to manage the processes
# print(num_cores)
# for i in range(frames):
# process_frame(i, vertices_all, vertices1_all, faces, output_dir, use_matplotlib, filenames, camera_params, camera_params1)
for i in range(frames):
process_frame(i, vertices_all, vertices1_all, faces, output_dir, filenames)
# progress = multiprocessing.Value('i', 0)
# lock = multiprocessing.Lock()
# with multiprocessing.Pool(num_cores) as pool:
# # pool.starmap(process_frame, [(i, vertices_all, vertices1_all, faces, output_dir, use_matplotlib, filenames, camera_params, camera_params1) for i in range(frames)])
# pool.starmap(
# process_frame,
# [
# (i, vertices_all, vertices1_all, faces, output_dir, filenames)
# for i in range(frames)
# ]
# )
# progress = multiprocessing.Value('i', 0)
# lock = multiprocessing.Lock()
# with multiprocessing.Pool(num_cores) as pool:
# # pool.starmap(process_frame, [(i, vertices_all, vertices1_all, faces, output_dir, use_matplotlib, filenames, camera_params, camera_params1) for i in range(frames)])
# pool.starmap(
# process_frame,
# [
# (i, vertices_all, vertices1_all, faces, output_dir, filenames)
# for i in range(frames)
# ]
# )
def render_one_sequence(
res_npz_path,
gt_npz_path,
output_dir,
audio_path,
model_folder="/data/datasets/smplx_models/",
model_type='smplx',
gender='NEUTRAL_2020',
ext='npz',
num_betas=300,
num_expression_coeffs=100,
use_face_contour=False,
use_matplotlib=False,
args=None):
import smplx
import matplotlib.pyplot as plt
import imageio
from tqdm import tqdm
import os
import numpy as np
import torch
import moviepy.editor as mp
import librosa
model = smplx.create(model_folder, model_type=model_type,
gender=gender, use_face_contour=use_face_contour,
num_betas=num_betas,
num_expression_coeffs=num_expression_coeffs,
ext=ext, use_pca=False).cuda()
#data_npz = np.load(f"{output_dir}{res_npz_path}.npz")
data_np_body = np.load(res_npz_path, allow_pickle=True)
gt_np_body = np.load(gt_npz_path, allow_pickle=True)
if not os.path.exists(output_dir): os.makedirs(output_dir)
filenames = []
# if not use_matplotlib:
# import trimesh
#import pyrender
#!!! I only have Windows, the following lines of comments are feasible, but have not been tested on other platforms.
#from pyvirtualdisplay import Display
#display = Display(visible=0, size=(500, 500))
#display.start()
faces = np.load(f"{model_folder}/smplx/SMPLX_NEUTRAL_2020.npz", allow_pickle=True)["f"]
seconds = 1
#data_npz["jaw_pose"].shape[0]
n = data_np_body["poses"].shape[0]
beta = torch.from_numpy(data_np_body["betas"]).to(torch.float32).unsqueeze(0).cuda()
beta = beta.repeat(n, 1)
expression = torch.from_numpy(data_np_body["expressions"][:n]).to(torch.float32).cuda()
jaw_pose = torch.from_numpy(data_np_body["poses"][:n, 66:69]).to(torch.float32).cuda()
pose = torch.from_numpy(data_np_body["poses"][:n]).to(torch.float32).cuda()
transl = torch.from_numpy(data_np_body["trans"][:n]).to(torch.float32).cuda()
# print(beta.shape, expression.shape, jaw_pose.shape, pose.shape, transl.shape, pose[:,:3].shape)
output = model(betas=beta, transl=transl, expression=expression, jaw_pose=jaw_pose,
global_orient=pose[:,:3], body_pose=pose[:,3:21*3+3], left_hand_pose=pose[:,25*3:40*3], right_hand_pose=pose[:,40*3:55*3],
leye_pose=pose[:, 69:72],
reye_pose=pose[:, 72:75],
return_verts=True)
vertices_all = output["vertices"].cpu().detach().numpy()
beta1 = torch.from_numpy(gt_np_body["betas"]).to(torch.float32).unsqueeze(0).cuda()
expression1 = torch.from_numpy(gt_np_body["expressions"][:n]).to(torch.float32).cuda()
jaw_pose1 = torch.from_numpy(gt_np_body["poses"][:n,66:69]).to(torch.float32).cuda()
pose1 = torch.from_numpy(gt_np_body["poses"][:n]).to(torch.float32).cuda()
transl1 = torch.from_numpy(gt_np_body["trans"][:n]).to(torch.float32).cuda()
output1 = model(betas=beta1, transl=transl1, expression=expression1, jaw_pose=jaw_pose1, global_orient=pose1[:,:3], body_pose=pose1[:,3:21*3+3], left_hand_pose=pose1[:,25*3:40*3], right_hand_pose=pose1[:,40*3:55*3],
leye_pose=pose1[:, 69:72],
reye_pose=pose1[:, 72:75],return_verts=True)
vertices1_all = output1["vertices"].cpu().detach().numpy()
if args.debug:
seconds = 1
else:
seconds = vertices_all.shape[0]//30
silent_video_file_path = utils.fast_render.generate_silent_videos(args.render_video_fps,
args.render_video_width,
args.render_video_height,
args.render_concurrent_num,
args.render_tmp_img_filetype,
int(seconds*args.render_video_fps),
vertices_all,
vertices1_all,
faces,
output_dir)
#final_clip = f"{output_dir}{res_npz_path.split('/')[-1][4:-4]}.mp4"
base_filename_without_ext = os.path.splitext(os.path.basename(res_npz_path))[0]
final_clip = os.path.join(output_dir, f"{base_filename_without_ext}.mp4")
utils.media.add_audio_to_video(silent_video_file_path, audio_path, final_clip)
os.remove(silent_video_file_path)
def print_exp_info(args):
logger.info(pprint.pformat(vars(args)))
logger.info(f"# ------------ {args.name} ----------- #")
logger.info("PyTorch version: {}".format(torch.__version__))
logger.info("CUDA version: {}".format(torch.version.cuda))
logger.info("{} GPUs".format(torch.cuda.device_count()))
logger.info(f"Random Seed: {args.random_seed}")
def args2csv(args, get_head=False, list4print=[]):
for k, v in args.items():
if isinstance(args[k], dict):
args2csv(args[k], get_head, list4print)
else: list4print.append(k) if get_head else list4print.append(v)
return list4print
class EpochTracker:
def __init__(self, metric_names, metric_directions):
assert len(metric_names) == len(metric_directions), "Metric names and directions should have the same length"
self.metric_names = metric_names
self.states = ['train', 'val', 'test']
self.types = ['last', 'best']
self.values = {name: {state: {type_: {'value': np.inf if not is_higher_better else -np.inf, 'epoch': 0}
for type_ in self.types}
for state in self.states}
for name, is_higher_better in zip(metric_names, metric_directions)}
self.loss_meters = {name: {state: AverageMeter(f"{name}_{state}")
for state in self.states}
for name in metric_names}
self.is_higher_better = {name: direction for name, direction in zip(metric_names, metric_directions)}
self.train_history = {name: [] for name in metric_names}
self.val_history = {name: [] for name in metric_names}
def update_meter(self, name, state, value):
self.loss_meters[name][state].update(value)
def update_values(self, name, state, epoch):
value_avg = self.loss_meters[name][state].avg
new_best = False
if ((value_avg < self.values[name][state]['best']['value'] and not self.is_higher_better[name]) or
(value_avg > self.values[name][state]['best']['value'] and self.is_higher_better[name])):
self.values[name][state]['best']['value'] = value_avg
self.values[name][state]['best']['epoch'] = epoch
new_best = True
self.values[name][state]['last']['value'] = value_avg
self.values[name][state]['last']['epoch'] = epoch
return new_best
def get(self, name, state, type_):
return self.values[name][state][type_]
def reset(self):
for name in self.metric_names:
for state in self.states:
self.loss_meters[name][state].reset()
def flatten_values(self):
flat_dict = {}
for name in self.metric_names:
for state in self.states:
for type_ in self.types:
value_key = f"{name}_{state}_{type_}"
epoch_key = f"{name}_{state}_{type_}_epoch"
flat_dict[value_key] = self.values[name][state][type_]['value']
flat_dict[epoch_key] = self.values[name][state][type_]['epoch']
return flat_dict
def update_and_plot(self, name, epoch, save_path):
new_best_train = self.update_values(name, 'train', epoch)
new_best_val = self.update_values(name, 'val', epoch)
self.train_history[name].append(self.loss_meters[name]['train'].avg)
self.val_history[name].append(self.loss_meters[name]['val'].avg)
train_values = self.train_history[name]
val_values = self.val_history[name]
epochs = list(range(1, len(train_values) + 1))
plt.figure(figsize=(10, 6))
plt.plot(epochs, train_values, label='Train')
plt.plot(epochs, val_values, label='Val')
plt.title(f'Train vs Val {name} over epochs')
plt.xlabel('Epochs')
plt.ylabel(name)
plt.legend()
plt.savefig(save_path)
plt.close()
return new_best_train, new_best_val
def record_trial(args, tracker):
"""
1. record notes, score, env_name, experments_path,
"""
csv_path = args.out_path + "custom/" +args.csv_name+".csv"
all_print_dict = vars(args)
all_print_dict.update(tracker.flatten_values())
if not os.path.exists(csv_path):
pd.DataFrame([all_print_dict]).to_csv(csv_path, index=False)
else:
df_existing = pd.read_csv(csv_path)
df_new = pd.DataFrame([all_print_dict])
df_aligned = df_existing.append(df_new).fillna("")
df_aligned.to_csv(csv_path, index=False)
def set_random_seed(args):
os.environ['PYTHONHASHSEED'] = str(args.random_seed)
random.seed(args.random_seed)
np.random.seed(args.random_seed)
torch.manual_seed(args.random_seed)
torch.cuda.manual_seed_all(args.random_seed)
torch.cuda.manual_seed(args.random_seed)
torch.backends.cudnn.deterministic = args.deterministic #args.CUDNN_DETERMINISTIC
torch.backends.cudnn.benchmark = args.benchmark
torch.backends.cudnn.enabled = args.cudnn_enabled
def save_checkpoints(save_path, model, opt=None, epoch=None, lrs=None):
if lrs is not None:
states = { 'model_state': model.state_dict(),
'epoch': epoch + 1,
'opt_state': opt.state_dict(),
'lrs':lrs.state_dict(),}
elif opt is not None:
states = { 'model_state': model.state_dict(),
'epoch': epoch + 1,
'opt_state': opt.state_dict(),}
else:
states = { 'model_state': model.state_dict(),}
torch.save(states, save_path)
def load_checkpoints(model, save_path, load_name='model'):
states = torch.load(save_path)
new_weights = OrderedDict()
flag=False
for k, v in states['model_state'].items():
#print(k)
if "module" not in k:
break
else:
new_weights[k[7:]]=v
flag=True
if flag:
try:
model.load_state_dict(new_weights)
except:
#print(states['model_state'])
model.load_state_dict(states['model_state'])
else:
model.load_state_dict(states['model_state'])
logger.info(f"load self-pretrained checkpoints for {load_name}")
def model_complexity(model, args):
from ptflops import get_model_complexity_info
flops, params = get_model_complexity_info(model, (args.T_GLOBAL._DIM, args.TRAIN.CROP, args.TRAIN),
as_strings=False, print_per_layer_stat=False)
logging.info('{:<30} {:<8} BFlops'.format('Computational complexity: ', flops / 1e9))
logging.info('{:<30} {:<8} MParams'.format('Number of parameters: ', params / 1e6))
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)