File size: 6,009 Bytes
4b9e459
6145eb5
 
 
 
 
 
 
 
 
 
96b5a68
6145eb5
 
 
 
 
 
 
96b5a68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12f2adb
96b5a68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6145eb5
 
 
 
 
 
96b5a68
6145eb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96b5a68
6145eb5
 
 
 
 
 
 
 
 
 
96b5a68
6145eb5
 
 
 
 
 
 
 
 
 
96b5a68
6145eb5
 
 
 
 
 
 
 
 
 
96b5a68
6145eb5
 
 
 
 
 
 
 
 
 
96b5a68
6145eb5
 
 
 
 
 
 
 
 
 
96b5a68
 
6145eb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import StreamingResponse
import torch
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler, DPMSolverSinglestepScheduler
from diffusers.pipelines import StableDiffusionInpaintPipeline, StableDiffusionXLInpaintPipeline
from huggingface_hub import hf_hub_download
import numpy as np
import random
from PIL import Image
import io
import os

app = FastAPI()

MAX_SEED = np.iinfo(np.int32).max

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load HF token from environment variable
HF_TOKEN = os.getenv("HF_TOKEN")

# Load pipelines
pipe_xl_final = StableDiffusionXLPipeline.from_single_file(
    hf_hub_download(repo_id="fluently/Fluently-XL-Final", filename="FluentlyXL-Final.safetensors", token=HF_TOKEN),
    torch_dtype=torch.float16,
    use_safetensors=True,
)
pipe_xl_final.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_xl_final.scheduler.config)
pipe_xl_final.to(device)

pipe_anime = StableDiffusionPipeline.from_pretrained(
    "fluently/Fluently-anime",
    torch_dtype=torch.float16,
    use_safetensors=True,
)
pipe_anime.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_anime.scheduler.config)
pipe_anime.to(device)

pipe_epic = StableDiffusionPipeline.from_pretrained(
    "fluently/Fluently-epic",
    torch_dtype=torch.float16,
    use_safetensors=True,
)
pipe_epic.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_epic.scheduler.config)
pipe_epic.to(device)



pipe_inpaint = StableDiffusionInpaintPipeline.from_pretrained(
    "fluently/Fluently-v4-inpainting",
    torch_dtype=torch.float16,
    use_safetensors=True,
)
pipe_inpaint.to(device)

pipe_xl = StableDiffusionXLPipeline.from_pretrained(
    "fluently/Fluently-XL-v4",
    torch_dtype=torch.float16,
    use_safetensors=True,
)
pipe_xl.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_xl.scheduler.config)
pipe_xl.to(device)

pipe_xl_lightning = StableDiffusionXLPipeline.from_pretrained(
    "fluently/Fluently-XL-v3-lightning",
    torch_dtype=torch.float16,
    use_safetensors=True,
)
pipe_xl_lightning.scheduler = DPMSolverSinglestepScheduler.from_config(pipe_xl_lightning.scheduler.config, use_karras_sigmas=False, timestep_spacing="trailing", lower_order_final=True)
pipe_xl_lightning.to(device)


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed


@app.post("/generate")
async def generate(
    model: str = Form(...),
    prompt: str = Form(...),
    negative_prompt: str = Form(""),
    use_negative_prompt: bool = Form(False),
    seed: int = Form(0),
    width: int = Form(1024),
    height: int = Form(1024),
    guidance_scale: float = Form(3),
    randomize_seed: bool = Form(False),
    inpaint_image: UploadFile = File(None),
    mask_image: UploadFile = File(None),
    blur_factor: float = Form(1.0),
    strength: float = Form(0.75)
):
    seed = int(randomize_seed_fn(seed, randomize_seed))

    if not use_negative_prompt:
        negative_prompt = ""

    inpaint_image_pil = Image.open(io.BytesIO(await inpaint_image.read())) if inpaint_image else None
    mask_image_pil = Image.open(io.BytesIO(await mask_image.read())) if mask_image else None

    if model == "Fluently XL Final":
        images = pipe_xl_final(
            prompt=prompt,
            negative_prompt=negative_prompt,
            width=width,
            height=height,
            guidance_scale=guidance_scale,
            num_inference_steps=25,
            num_images_per_prompt=1,
            output_type="pil",
        ).images
    elif model == "Fluently Anime":
        images = pipe_anime(
            prompt=prompt,
            negative_prompt=negative_prompt,
            width=width,
            height=height,
            guidance_scale=guidance_scale,
            num_inference_steps=30,
            num_images_per_prompt=1,
            output_type="pil",
        ).images
    elif model == "Fluently Epic":
        images = pipe_epic(
            prompt=prompt,
            negative_prompt=negative_prompt,
            width=width,
            height=height,
            guidance_scale=guidance_scale,
            num_inference_steps=30,
            num_images_per_prompt=1,
            output_type="pil",
        ).images
    elif model == "Fluently XL v4":
        images = pipe_xl(
            prompt=prompt,
            negative_prompt=negative_prompt,
            width=width,
            height=height,
            guidance_scale=guidance_scale,
            num_inference_steps=25,
            num_images_per_prompt=1,
            output_type="pil",
        ).images
    elif model == "Fluently XL v3 Lightning":
        images = pipe_xl_lightning(
            prompt=prompt,
            negative_prompt=negative_prompt,
            width=width,
            height=height,
            guidance_scale=2,
            num_inference_steps=5,
            num_images_per_prompt=1,
            output_type="pil",
        ).images
    elif model == "Fluently v4 inpaint" or model == "Fluently XL v3 inpaint":
        blurred_mask = pipe_inpaint.mask_processor.blur(mask_image_pil, blur_factor=blur_factor)
        images = pipe_inpaint(
            prompt=prompt,
            image=inpaint_image_pil,
            mask_image=blurred_mask,
            negative_prompt=negative_prompt,
            width=width,
            height=height,
            guidance_scale=guidance_scale,
            num_inference_steps=30,
            strength=strength,
            num_images_per_prompt=1,
            output_type="pil",
        ).images

    img = images[0]
    img_byte_arr = io.BytesIO()
    img.save(img_byte_arr, format='PNG')
    img_byte_arr.seek(0)

    return StreamingResponse(img_byte_arr, media_type="image/png")


if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)