Real-ESRGAN_V2 / cog_predict.py
saicharan1234's picture
Upload 16 files
ccc7aaa verified
raw
history blame
6.84 kB
# flake8: noqa
# This file is used for deploying replicate models
# running: cog predict -i img=@inputs/00017_gray.png -i version='General - v3' -i scale=2 -i face_enhance=True -i tile=0
# push: cog push r8.im/xinntao/realesrgan
import os
os.system('pip install gfpgan')
os.system('python setup.py develop')
import cv2
import shutil
import tempfile
import torch
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from realesrgan.utils import RealESRGANer
try:
from cog import BasePredictor, Input, Path
from gfpgan import GFPGANer
except Exception:
print('please install cog and realesrgan package')
class Predictor(BasePredictor):
def setup(self):
os.makedirs('output', exist_ok=True)
# download weights
if not os.path.exists('weights/realesr-general-x4v3.pth'):
os.system(
'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P ./weights'
)
if not os.path.exists('weights/GFPGANv1.4.pth'):
os.system('wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P ./weights')
if not os.path.exists('weights/RealESRGAN_x4plus.pth'):
os.system(
'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P ./weights'
)
if not os.path.exists('weights/RealESRGAN_x4plus_anime_6B.pth'):
os.system(
'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth -P ./weights'
)
if not os.path.exists('weights/realesr-animevideov3.pth'):
os.system(
'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth -P ./weights'
)
def choose_model(self, scale, version, tile=0):
half = True if torch.cuda.is_available() else False
if version == 'General - RealESRGANplus':
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
model_path = 'weights/RealESRGAN_x4plus.pth'
self.upsampler = RealESRGANer(
scale=4, model_path=model_path, model=model, tile=tile, tile_pad=10, pre_pad=0, half=half)
elif version == 'General - v3':
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
model_path = 'weights/realesr-general-x4v3.pth'
self.upsampler = RealESRGANer(
scale=4, model_path=model_path, model=model, tile=tile, tile_pad=10, pre_pad=0, half=half)
elif version == 'Anime - anime6B':
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
model_path = 'weights/RealESRGAN_x4plus_anime_6B.pth'
self.upsampler = RealESRGANer(
scale=4, model_path=model_path, model=model, tile=tile, tile_pad=10, pre_pad=0, half=half)
elif version == 'AnimeVideo - v3':
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu')
model_path = 'weights/realesr-animevideov3.pth'
self.upsampler = RealESRGANer(
scale=4, model_path=model_path, model=model, tile=tile, tile_pad=10, pre_pad=0, half=half)
self.face_enhancer = GFPGANer(
model_path='weights/GFPGANv1.4.pth',
upscale=scale,
arch='clean',
channel_multiplier=2,
bg_upsampler=self.upsampler)
def predict(
self,
img: Path = Input(description='Input'),
version: str = Input(
description='RealESRGAN version. Please see [Readme] below for more descriptions',
choices=['General - RealESRGANplus', 'General - v3', 'Anime - anime6B', 'AnimeVideo - v3'],
default='General - v3'),
scale: float = Input(description='Rescaling factor', default=2),
face_enhance: bool = Input(
description='Enhance faces with GFPGAN. Note that it does not work for anime images/vidoes', default=False),
tile: int = Input(
description=
'Tile size. Default is 0, that is no tile. When encountering the out-of-GPU-memory issue, please specify it, e.g., 400 or 200',
default=0)
) -> Path:
if tile <= 100 or tile is None:
tile = 0
print(f'img: {img}. version: {version}. scale: {scale}. face_enhance: {face_enhance}. tile: {tile}.')
try:
extension = os.path.splitext(os.path.basename(str(img)))[1]
img = cv2.imread(str(img), cv2.IMREAD_UNCHANGED)
if len(img.shape) == 3 and img.shape[2] == 4:
img_mode = 'RGBA'
elif len(img.shape) == 2:
img_mode = None
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
else:
img_mode = None
h, w = img.shape[0:2]
if h < 300:
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
self.choose_model(scale, version, tile)
try:
if face_enhance:
_, _, output = self.face_enhancer.enhance(
img, has_aligned=False, only_center_face=False, paste_back=True)
else:
output, _ = self.upsampler.enhance(img, outscale=scale)
except RuntimeError as error:
print('Error', error)
print('If you encounter CUDA out of memory, try to set "tile" to a smaller size, e.g., 400.')
if img_mode == 'RGBA': # RGBA images should be saved in png format
extension = 'png'
# save_path = f'output/out.{extension}'
# cv2.imwrite(save_path, output)
out_path = Path(tempfile.mkdtemp()) / f'out.{extension}'
cv2.imwrite(str(out_path), output)
except Exception as error:
print('global exception: ', error)
finally:
clean_folder('output')
return out_path
def clean_folder(folder):
for filename in os.listdir(folder):
file_path = os.path.join(folder, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
print(f'Failed to delete {file_path}. Reason: {e}')