saideep-arikontham's picture
Create app.py
b48f1b7 verified
raw
history blame
1.04 kB
import gradio as gr
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
from peft import PeftModel, PeftConfig
base_model = "cardiffnlp/twitter-roberta-base-sentiment-latest"
adapter_model = 'saideep-arikontham/twitter-roberta-base-sentiment-latest-biden-stance'
# define label maps
id2label = {0: "Anti-Biden", 1 : "Pro-Biden"}
label2id = {"Anti-Biden" : 0, "Pro-Biden" : 1}
# generate classification model from model_checkpoint
model = AutoModelForSequenceClassification.from_pretrained(base_model, num_labels=2, id2label = id2label, label2id = label2id, ignore_mismatched_sizes=True)
model = PeftModel.from_pretrained(model, adapter_model)
tokenizer = AutoTokenizer.from_pretrained(adapter_model)
def greet(text):
model.to('cpu')
inputs = tokenizer.encode(text, return_tensors="pt").to("cpu")
# compute logits
logits = model(inputs).logits
# convert logits to label
predictions = torch.argmax(logits)
return "This text is " + id2label[predictions.tolist()] + "!!"