Spaces:
Sleeping
Sleeping
Commit
·
5aaa320
1
Parent(s):
79b52c8
Fixed app v2
Browse files
app.py
CHANGED
@@ -1,86 +1,82 @@
|
|
1 |
-
|
|
|
|
|
2 |
from pydantic import BaseModel
|
|
|
3 |
from typing import List
|
4 |
-
from transformers import pipeline
|
5 |
|
6 |
-
# Initialize FastAPI app
|
7 |
app = FastAPI()
|
8 |
|
|
|
|
|
|
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
class LogRequest(BaseModel):
|
14 |
-
log: str
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
#threat_type_predictions: List[str]
|
22 |
-
#detected_threat_level: str
|
23 |
-
#detected_threat_type: str
|
24 |
-
pred : List[object]
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
# Extract top predictions for each <mask>
|
35 |
-
#threat_level_predictions = [pred["token_str"].strip() for pred in predictions[:topk]]
|
36 |
-
#threat_type_predictions = [pred["token_str"].strip() for pred in predictions[topk:2*topk]]
|
37 |
-
|
38 |
-
return predictions
|
39 |
-
def get_maximum_predictions(data):
|
40 |
-
# Initialize list to store maximum values for each prediction array
|
41 |
-
max_predictions = []
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
max_prediction = pred["token_str"].strip()
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
# Get result
|
62 |
-
|
63 |
-
# FastAPI endpoint for detecting threat level and type
|
64 |
-
@app.post("/detect_threat", response_model=ThreatResponse)
|
65 |
-
async def detect_threat(log_request: LogRequest):
|
66 |
-
log = log_request.log
|
67 |
-
|
68 |
-
# Predict the threat level and type for the given log entry
|
69 |
-
predictions = predict_threat(log, unmasker)
|
70 |
-
|
71 |
-
# Extract top predictions for threat level and type
|
72 |
-
##threat_level_predictions = predictions[0] if len(predictions) > 0 else ["Unknown"]
|
73 |
-
## threat_type_predictions = predictions[1] if len(predictions) > 1 else ["Unknown"]
|
74 |
-
|
75 |
-
# Use the top prediction as the most likely threat level and type
|
76 |
-
##detected_threat_level = threat_level_predictions[0] if threat_level_predictions else "Unknown"
|
77 |
-
#detected_threat_type = threat_type_predictions[0] if threat_type_predictions else "Unknown"
|
78 |
-
|
79 |
-
# Prepare response
|
80 |
-
response = ThreatResponse(
|
81 |
-
log=log,
|
82 |
-
prompt=f"{log} Source Ip : <mask> \n Dest Ip : <mask> \n , Threat Level : <mask> \n Threat Type : <mask>",
|
83 |
-
pred=predictions
|
84 |
-
)
|
85 |
-
|
86 |
-
return response
|
|
|
1 |
+
import torch
|
2 |
+
import json
|
3 |
+
from fastapi import FastAPI, HTTPException
|
4 |
from pydantic import BaseModel
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
from typing import List
|
|
|
7 |
|
8 |
+
# Initialize the FastAPI app
|
9 |
app = FastAPI()
|
10 |
|
11 |
+
# Model and tokenizer paths and loading
|
12 |
+
model_path = "WhiteRabbitNeo/WhiteRabbitNeo-2.5-Qwen-2.5-Coder-7B"
|
13 |
+
output_file_path = "/home/user/conversations.jsonl"
|
14 |
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(
|
16 |
+
model_path,
|
17 |
+
torch_dtype=torch.float16,
|
18 |
+
device_map="auto",
|
19 |
+
load_in_4bit=False,
|
20 |
+
trust_remote_code=False,
|
21 |
+
)
|
22 |
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
|
|
|
24 |
|
25 |
+
# Function to generate text
|
26 |
+
def generate_text(instruction):
|
27 |
+
tokens = tokenizer.encode(instruction)
|
28 |
+
tokens = torch.LongTensor(tokens).unsqueeze(0)
|
29 |
+
tokens = tokens.to("cuda")
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
instance = {
|
32 |
+
"input_ids": tokens,
|
33 |
+
"top_p": 1.0,
|
34 |
+
"temperature": 0.75,
|
35 |
+
"generate_len": 2048,
|
36 |
+
"top_k": 50,
|
37 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
length = len(tokens[0])
|
40 |
+
with torch.no_grad():
|
41 |
+
rest = model.generate(
|
42 |
+
input_ids=tokens,
|
43 |
+
max_length=length + instance["generate_len"],
|
44 |
+
use_cache=True,
|
45 |
+
do_sample=True,
|
46 |
+
top_p=instance["top_p"],
|
47 |
+
temperature=instance["temperature"],
|
48 |
+
top_k=instance["top_k"],
|
49 |
+
num_return_sequences=1,
|
50 |
+
pad_token_id=tokenizer.eos_token_id,
|
51 |
+
)
|
52 |
+
output = rest[0][length:]
|
53 |
+
string = tokenizer.decode(output, skip_special_tokens=True)
|
54 |
+
return f"{string}"
|
55 |
|
56 |
+
# Data model for FastAPI input
|
57 |
+
class UserInput(BaseModel):
|
58 |
+
conversation: str
|
59 |
+
user_input: str
|
|
|
60 |
|
61 |
+
@app.post("/generate/")
|
62 |
+
async def generate_response(user_input: UserInput):
|
63 |
+
try:
|
64 |
+
# Construct the prompt
|
65 |
+
conversation = user_input.conversation
|
66 |
+
llm_prompt = f"{conversation}{user_input.user_input}<|im_end|>\n<|im_start|>assistant\nSure! Let me provide a complete and a thorough answer to your question, with functional and production-ready code.\n"
|
67 |
+
|
68 |
+
# Generate response
|
69 |
+
answer = generate_text(llm_prompt)
|
70 |
+
|
71 |
+
# Update conversation for future requests
|
72 |
+
updated_conversation = f"{llm_prompt}{answer}<|im_end|>\n<|im_start|>user\n"
|
73 |
+
|
74 |
+
return {
|
75 |
+
"response": answer,
|
76 |
+
"updated_conversation": updated_conversation
|
77 |
+
}
|
78 |
+
except Exception as e:
|
79 |
+
raise HTTPException(status_code=500, detail=str(e))
|
80 |
|
81 |
+
# Run the app
|
82 |
+
# To start the server, use the command: uvicorn filename:app --host 0.0.0.0 --port 8000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|