Spaces:
Sleeping
Sleeping
saifeddinemk
commited on
Commit
·
9b9a132
1
Parent(s):
6c70ef6
Fixed app v2
Browse files
app.py
CHANGED
@@ -1,68 +1,79 @@
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
-
|
4 |
-
from
|
5 |
-
import asyncio
|
6 |
import uvicorn
|
7 |
|
8 |
# Initialize FastAPI app
|
9 |
app = FastAPI()
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
log_data: str
|
26 |
|
27 |
-
|
28 |
-
class AnalysisResponse(BaseModel):
|
29 |
analysis: str
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
# Define the route for security log analysis
|
32 |
-
@app.post("/analyze_security_logs", response_model=
|
33 |
-
async def analyze_security_logs(request:
|
34 |
-
llm = load_model()
|
35 |
try:
|
36 |
-
#
|
37 |
-
|
38 |
-
|
39 |
-
"Specifically, look for patterns or unusual events that might suggest unauthorized access, data exfiltration, suspicious IP addresses, frequent access attempts, "
|
40 |
-
"or other anomalies. Provide a detailed analysis that includes:\n\n"
|
41 |
-
"1. A list of any suspicious IP addresses with explanations of why they are flagged as such.\n"
|
42 |
-
"2. Any patterns or sequences in the logs that could indicate an ongoing attack or probing activity.\n"
|
43 |
-
"3. Identified unauthorized access attempts, with details on the methods or vulnerabilities being exploited, if detectable.\n"
|
44 |
-
"4. Recommendations on immediate actions or mitigations the system administrator should take to address any identified threats.\n"
|
45 |
-
"5. An assessment of the overall security posture based on the log data, including any potential weaknesses or areas for improvement.\n\n"
|
46 |
-
"Log Data:\n"
|
47 |
-
f"{request.log_data}\n\n"
|
48 |
-
"Please provide a comprehensive response addressing all points in detail."
|
49 |
-
)
|
50 |
-
|
51 |
-
# Generate response with controlled max tokens
|
52 |
-
response = await asyncio.to_thread(
|
53 |
-
llm.create_chat_completion,
|
54 |
-
messages=[
|
55 |
-
{
|
56 |
-
"role": "user",
|
57 |
-
"content": prompt
|
58 |
-
}
|
59 |
-
],
|
60 |
-
max_tokens=1024 # Adjust to limit the response length
|
61 |
-
)
|
62 |
-
|
63 |
-
# Extract and return the analysis text
|
64 |
-
analysis_text = response["choices"][0]["message"]["content"]
|
65 |
-
return AnalysisResponse(analysis=analysis_text)
|
66 |
except Exception as e:
|
67 |
raise HTTPException(status_code=500, detail=str(e))
|
68 |
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TextStreamer
|
|
|
5 |
import uvicorn
|
6 |
|
7 |
# Initialize FastAPI app
|
8 |
app = FastAPI()
|
9 |
|
10 |
+
# Configure and load the quantized model
|
11 |
+
model_id = 'model_result'
|
12 |
+
|
13 |
+
bnb_config = BitsAndBytesConfig(
|
14 |
+
load_in_4bit=True,
|
15 |
+
bnb_4bit_quant_type="nf4",
|
16 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
17 |
+
bnb_4bit_use_double_quant=True,
|
18 |
+
)
|
19 |
+
|
20 |
+
# Load tokenizer and model with 4-bit quantization settings
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
22 |
+
tokenizer.pad_token = tokenizer.eos_token
|
23 |
|
24 |
+
model = AutoModelForCausalLM.from_pretrained(
|
25 |
+
model_id,
|
26 |
+
quantization_config=bnb_config,
|
27 |
+
device_map="auto",
|
28 |
+
)
|
29 |
+
model.eval()
|
30 |
+
|
31 |
+
# Define request and response models
|
32 |
+
class SecurityLogRequest(BaseModel):
|
33 |
log_data: str
|
34 |
|
35 |
+
class SecurityAnalysisResponse(BaseModel):
|
|
|
36 |
analysis: str
|
37 |
|
38 |
+
# Inference function
|
39 |
+
def generate_response(input_text: str) -> str:
|
40 |
+
streamer = TextStreamer(tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True)
|
41 |
+
|
42 |
+
messages = [
|
43 |
+
{"role": "system", "content": "You are an information security AI assistant specialized in analyzing security logs. Identify potential threats, suspicious IP addresses, unauthorized access attempts, and recommend actions based on the logs."},
|
44 |
+
{"role": "user", "content": f"Please analyze the following security logs and provide insights on any potential malicious activity:\n{input_text}"}
|
45 |
+
]
|
46 |
+
|
47 |
+
input_ids = tokenizer.apply_chat_template(
|
48 |
+
messages,
|
49 |
+
tokenize=True,
|
50 |
+
add_generation_prompt=True,
|
51 |
+
return_tensors="pt",
|
52 |
+
).to(model.device)
|
53 |
+
|
54 |
+
# Generate response with the model
|
55 |
+
outputs = model.generate(
|
56 |
+
input_ids,
|
57 |
+
streamer=streamer,
|
58 |
+
max_new_tokens=512, # Limit max tokens for faster response
|
59 |
+
num_beams=1,
|
60 |
+
do_sample=True,
|
61 |
+
temperature=0.1,
|
62 |
+
top_p=0.95,
|
63 |
+
top_k=10
|
64 |
+
)
|
65 |
+
|
66 |
+
# Extract and return generated text
|
67 |
+
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
68 |
+
return response_text
|
69 |
+
|
70 |
# Define the route for security log analysis
|
71 |
+
@app.post("/analyze_security_logs", response_model=SecurityAnalysisResponse)
|
72 |
+
async def analyze_security_logs(request: SecurityLogRequest):
|
|
|
73 |
try:
|
74 |
+
# Run inference
|
75 |
+
analysis_text = generate_response(request.log_data)
|
76 |
+
return SecurityAnalysisResponse(analysis=analysis_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
except Exception as e:
|
78 |
raise HTTPException(status_code=500, detail=str(e))
|
79 |
|