File size: 8,043 Bytes
e8f079f
 
 
 
 
002b092
9f54a3b
 
 
 
dab5cc9
 
9f54a3b
 
 
 
 
e8f079f
9f54a3b
 
dab5cc9
9f54a3b
 
 
 
 
 
 
002b092
 
 
 
e8f079f
9f54a3b
 
 
0ca86ba
 
 
 
 
 
094183d
0ca86ba
 
 
094183d
 
 
 
e8f079f
 
 
 
 
 
094183d
 
e8f079f
 
 
 
 
 
 
 
002b092
 
 
 
0ca86ba
9f54a3b
002b092
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142827c
 
 
 
 
 
 
 
 
 
9f54a3b
 
 
 
 
 
 
142827c
 
 
 
 
 
 
 
0ca86ba
 
 
 
142827c
2398106
a5fe662
9f54a3b
eabc41f
 
 
 
 
 
 
 
d135f7b
eabc41f
 
 
 
 
9f54a3b
 
 
 
ac02b56
 
9f54a3b
 
 
be9d4b9
9f54a3b
 
 
 
 
 
 
 
 
 
 
 
 
 
3bb7e5d
9f54a3b
 
 
 
 
 
 
 
 
 
002b092
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f54a3b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
""" Simple Chatbot
@author: Nigel Gebodh
@email: nigel.gebodh@gmail.com

"""
import numpy as np
import streamlit as st
from openai import OpenAI
import os
import sys
from dotenv import load_dotenv, dotenv_values
load_dotenv()





# initialize the client
client = OpenAI(
  base_url="https://api-inference.huggingface.co/v1",
  api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN')#"hf_xxx" # Replace with your token
) 




#Create supported models
model_links ={
    "Meta-Llama-3-8B":"meta-llama/Meta-Llama-3-8B-Instruct", 
    "Mistral-7B":"mistralai/Mistral-7B-Instruct-v0.2",
    "Gemma-7B":"google/gemma-1.1-7b-it",
    "Gemma-2B":"google/gemma-1.1-2b-it",
    "Zephyr-7B-β":"HuggingFaceH4/zephyr-7b-beta",

}

#Pull info about the model to display
model_info ={
    "Mistral":
        {'description':"""The Mistral model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
            \nIt was created by the [**Mistral AI**](https://mistral.ai/news/announcing-mistral-7b/) team as has over  **7 billion parameters.** \n""",
        'logo':'https://mistral.ai/images/logo_hubc88c4ece131b91c7cb753f40e9e1cc5_2589_256x0_resize_q97_h2_lanczos_3.webp'},
    "Gemma-7B":        
        {'description':"""The Gemma model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
            \nIt was created by the [**Google's AI Team**](https://blog.google/technology/developers/gemma-open-models/) team as has over  **7 billion parameters.** \n""",
        'logo':'https://pbs.twimg.com/media/GG3sJg7X0AEaNIq.jpg'},
    "Gemma-2B":        
    {'description':"""The Gemma model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
        \nIt was created by the [**Google's AI Team**](https://blog.google/technology/developers/gemma-open-models/) team as has over  **2 billion parameters.** \n""",
    'logo':'https://pbs.twimg.com/media/GG3sJg7X0AEaNIq.jpg'},
    "Zephyr-7B":        
    {'description':"""The Zephyr model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
        \nFrom Huggingface: \n\
        Zephyr is a series of language models that are trained to act as helpful assistants. \
        [Zephyr 7B Gemma](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1)\
        is the third model in the series, and is a fine-tuned version of google/gemma-7b \
        that was trained on on a mix of publicly available, synthetic datasets using Direct Preference Optimization (DPO)\n""",
    'logo':'https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1/resolve/main/thumbnail.png'},
    "Zephyr-7B-β":        
    {'description':"""The Zephyr model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
        \nFrom Huggingface: \n\
        Zephyr is a series of language models that are trained to act as helpful assistants. \
        [Zephyr-7B-β](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta)\
        is the second model in the series, and is a fine-tuned version of mistralai/Mistral-7B-v0.1 \
        that was trained on on a mix of publicly available, synthetic datasets using Direct Preference Optimization (DPO)\n""",
    'logo':'https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png'},
    "Meta-Llama-3-8B":
    {'description':"""The Llama (3) model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
        \nIt was created by the [**Meta's AI**](https://llama.meta.com/) team as has over  **8 billion parameters.** \n""",
    'logo':'Llama_logo.png'},
}


#Random dog images for error message
random_dog = ["0f476473-2d8b-415e-b944-483768418a95.jpg",
              "1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
              "526590d2-8817-4ff0-8c62-fdcba5306d02.jpg",
              "1326984c-39b0-492c-a773-f120d747a7e2.jpg",
              "42a98d03-5ed7-4b3b-af89-7c4876cb14c3.jpg",
              "8b3317ed-2083-42ac-a575-7ae45f9fdc0d.jpg",
              "ee17f54a-83ac-44a3-8a35-e89ff7153fb4.jpg",
              "027eef85-ccc1-4a66-8967-5d74f34c8bb4.jpg",
              "08f5398d-7f89-47da-a5cd-1ed74967dc1f.jpg",
              "0fd781ff-ec46-4bdc-a4e8-24f18bf07def.jpg",
              "0fb4aeee-f949-4c7b-a6d8-05bf0736bdd1.jpg",
              "6edac66e-c0de-4e69-a9d6-b2e6f6f9001b.jpg",
              "bfb9e165-c643-4993-9b3a-7e73571672a6.jpg"]



def reset_conversation():
    '''
    Resets Conversation
    '''
    st.session_state.conversation = []
    st.session_state.messages = []
    return None
    



# Define the available models
models =[key for key in model_links.keys()]

# Create the sidebar with the dropdown for model selection
selected_model = st.sidebar.selectbox("Select Model", models)

#Create a temperature slider
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5))


#Add reset button to clear conversation
st.sidebar.button('Reset Chat', on_click=reset_conversation) #Reset button


# Create model description
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.markdown(model_info[selected_model]['description'])
st.sidebar.image(model_info[selected_model]['logo'])
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
st.sidebar.markdown("\nLearn how to build this chatbot [here](https://ngebodh.github.io/projects/2024-03-05/).")
st.sidebar.markdown("\nRun into issues? Try the [back-up](https://huggingface.co/spaces/ngebodh/SimpleChatbot-Backup).")




if "prev_option" not in st.session_state:
    st.session_state.prev_option = selected_model

if st.session_state.prev_option != selected_model:
    st.session_state.messages = []
    # st.write(f"Changed to {selected_model}")
    st.session_state.prev_option = selected_model
    reset_conversation()



#Pull in the model we want to use
repo_id = model_links[selected_model]


st.subheader(f'AI - {selected_model}')
# st.title(f'ChatBot Using {selected_model}')

# Set a default model
if selected_model not in st.session_state:
    st.session_state[selected_model] = model_links[selected_model] 

# Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = []


# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])



# Accept user input
if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"):

    # Display user message in chat message container
    with st.chat_message("user"):
        st.markdown(prompt)
    # Add user message to chat history
    st.session_state.messages.append({"role": "user", "content": prompt})


    # Display assistant response in chat message container
    with st.chat_message("assistant"):

        try:
            stream = client.chat.completions.create(
                model=model_links[selected_model],
                messages=[
                    {"role": m["role"], "content": m["content"]}
                    for m in st.session_state.messages
                ],
                temperature=temp_values,#0.5,
                stream=True,
                max_tokens=3000,
            )
    
            response = st.write_stream(stream)

        except Exception as e:
            # st.empty()
            response = "😵‍💫 Looks like someone unplugged something!\
                    \n Either the model space is being updated or something is down.\
                    \n\
                    \n Try again later. \
                    \n\
                    \n Here's a random pic of a 🐶:"
            st.write(response)
            random_dog_pick = 'https://random.dog/'+ random_dog[np.random.randint(len(random_dog))]
            st.image(random_dog_pick)
            st.write("This was the error message:")
            st.write(e)



        
    st.session_state.messages.append({"role": "assistant", "content": response})