|
""" Simple Chatbot |
|
@author: Nigel Gebodh |
|
@email: nigel.gebodh@gmail.com |
|
|
|
""" |
|
|
|
import streamlit as st |
|
from openai import OpenAI |
|
import os |
|
import sys |
|
from dotenv import load_dotenv, dotenv_values |
|
load_dotenv() |
|
|
|
|
|
|
|
|
|
|
|
|
|
client = OpenAI( |
|
base_url="https://api-inference.huggingface.co/v1", |
|
api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN') |
|
) |
|
|
|
|
|
|
|
|
|
|
|
model_links ={ |
|
"Mistral":"mistralai/Mistral-7B-Instruct-v0.2", |
|
"Gemma-7B":"google/gemma-7b-it", |
|
"Gemma-2B":"google/gemma-2b-it", |
|
"Zephyr-7B-β":"HuggingFaceH4/zephyr-7b-beta", |
|
|
|
} |
|
|
|
|
|
model_info ={ |
|
"Mistral": |
|
{'description':"""The Mistral model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \ |
|
\nIt was created by the [**Mistral AI**](https://mistral.ai/news/announcing-mistral-7b/) team as has over **7 billion parameters.** \n""", |
|
'logo':'https://mistral.ai/images/logo_hubc88c4ece131b91c7cb753f40e9e1cc5_2589_256x0_resize_q97_h2_lanczos_3.webp'}, |
|
"Gemma-7B": |
|
{'description':"""The Gemma model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \ |
|
\nIt was created by the [**Google's AI Team**](https://blog.google/technology/developers/gemma-open-models/) team as has over **7 billion parameters.** \n""", |
|
'logo':'https://pbs.twimg.com/media/GG3sJg7X0AEaNIq.jpg'}, |
|
"Gemma-2B": |
|
{'description':"""The Gemma model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \ |
|
\nIt was created by the [**Google's AI Team**](https://blog.google/technology/developers/gemma-open-models/) team as has over **2 billion parameters.** \n""", |
|
'logo':'https://pbs.twimg.com/media/GG3sJg7X0AEaNIq.jpg'}, |
|
"Zephyr-7B": |
|
{'description':"""The Zephyr model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \ |
|
\nFrom Huggingface: \n\ |
|
Zephyr is a series of language models that are trained to act as helpful assistants. \ |
|
[Zephyr 7B Gemma](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1)\ |
|
is the third model in the series, and is a fine-tuned version of google/gemma-7b \ |
|
that was trained on on a mix of publicly available, synthetic datasets using Direct Preference Optimization (DPO)\n""", |
|
'logo':'https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1/resolve/main/thumbnail.png'}, |
|
"Zephyr-7B-β": |
|
{'description':"""The Zephyr model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \ |
|
\nFrom Huggingface: \n\ |
|
Zephyr is a series of language models that are trained to act as helpful assistants. \ |
|
[Zephyr-7B-β](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta)\ |
|
is the second model in the series, and is a fine-tuned version of mistralai/Mistral-7B-v0.1 \ |
|
that was trained on on a mix of publicly available, synthetic datasets using Direct Preference Optimization (DPO)\n""", |
|
'logo':'https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png'}, |
|
|
|
} |
|
|
|
def reset_conversation(): |
|
''' |
|
Resets Conversation |
|
''' |
|
st.session_state.conversation = [] |
|
st.session_state.messages = [] |
|
return None |
|
|
|
|
|
|
|
|
|
|
|
models =[key for key in model_links.keys()] |
|
|
|
|
|
selected_model = st.sidebar.selectbox("Select Model", models) |
|
|
|
|
|
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5)) |
|
|
|
|
|
|
|
st.sidebar.button('Reset Chat', on_click=reset_conversation) |
|
|
|
|
|
|
|
st.sidebar.write(f"You're now chatting with **{selected_model}**") |
|
st.sidebar.markdown(model_info[selected_model]['description']) |
|
st.sidebar.image(model_info[selected_model]['logo']) |
|
st.sidebar.markdown("*Generated content may be inaccurate or false.*") |
|
st.sidebar.markdown("\nLearn how to build this chatbot [here](https://ngebodh.github.io/projects/2024-03-05/).") |
|
st.sidebar.markdown("\nRun into issues? Try the [back-up](https://huggingface.co/spaces/ngebodh/SimpleChatbot-Backup).") |
|
|
|
|
|
|
|
|
|
if "prev_option" not in st.session_state: |
|
st.session_state.prev_option = selected_model |
|
|
|
if st.session_state.prev_option != selected_model: |
|
st.session_state.messages = [] |
|
|
|
st.session_state.prev_option = selected_model |
|
reset_conversation() |
|
|
|
|
|
|
|
|
|
repo_id = model_links[selected_model] |
|
|
|
|
|
st.subheader(f'AI - {selected_model}') |
|
|
|
|
|
|
|
if selected_model not in st.session_state: |
|
st.session_state[selected_model] = model_links[selected_model] |
|
|
|
|
|
if "messages" not in st.session_state: |
|
st.session_state.messages = [] |
|
|
|
|
|
|
|
for message in st.session_state.messages: |
|
with st.chat_message(message["role"]): |
|
st.markdown(message["content"]) |
|
|
|
|
|
|
|
|
|
if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"): |
|
|
|
|
|
with st.chat_message("user"): |
|
st.markdown(prompt) |
|
|
|
st.session_state.messages.append({"role": "user", "content": prompt}) |
|
|
|
|
|
|
|
with st.chat_message("assistant"): |
|
stream = client.chat.completions.create( |
|
model=model_links[selected_model], |
|
messages=[ |
|
{"role": m["role"], "content": m["content"]} |
|
for m in st.session_state.messages |
|
], |
|
temperature=temp_values, |
|
stream=True, |
|
max_tokens=3000, |
|
) |
|
|
|
response = st.write_stream(stream) |
|
st.session_state.messages.append({"role": "assistant", "content": response}) |