barghavani commited on
Commit
2321c66
·
verified ·
1 Parent(s): 44f17b9

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +99 -0
app.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from PyPDF2 import PdfReader
3
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
4
+ import os
5
+ from langchain_google_genai import GoogleGenerativeAIEmbeddings
6
+ import google.generativeai as genai
7
+ from langchain.vectorstores import FAISS
8
+ from langchain_google_genai import ChatGoogleGenerativeAI
9
+ from langchain.chains.question_answering import load_qa_chain
10
+ from langchain.prompts import PromptTemplate
11
+ from dotenv import load_dotenv
12
+
13
+ genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
14
+
15
+
16
+ def get_pdf_text(pdf_docs):
17
+ text=""
18
+ for pdf in pdf_docs:
19
+ pdf_reader= PdfReader(pdf)
20
+ for page in pdf_reader.pages:
21
+ text+= page.extract_text()
22
+ return text
23
+
24
+
25
+
26
+ def get_text_chunks(text):
27
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
28
+ chunks = text_splitter.split_text(text)
29
+ return chunks
30
+
31
+
32
+ def get_vector_store(text_chunks):
33
+ embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
34
+ vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
35
+ vector_store.save_local("faiss_index")
36
+
37
+
38
+ def get_conversational_chain():
39
+
40
+ prompt_template = """
41
+ Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
42
+ provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
43
+ Context:\n {context}?\n
44
+ Question: \n{question}\n
45
+ Answer:
46
+ """
47
+
48
+ model = ChatGoogleGenerativeAI(model="gemini-pro",
49
+ temperature=0.1)
50
+
51
+ prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"])
52
+ chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
53
+
54
+ return chain
55
+
56
+
57
+
58
+ def user_input(user_question):
59
+ embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
60
+
61
+ new_db = FAISS.load_local("faiss_index", embeddings,allow_dangerous_deserialization= True)
62
+ docs = new_db.similarity_search(user_question)
63
+
64
+ chain = get_conversational_chain()
65
+
66
+
67
+ response = chain(
68
+ {"input_documents":docs, "question": user_question}
69
+ , return_only_outputs=True)
70
+
71
+ print(response)
72
+ st.write("Reply: ", response["output_text"])
73
+
74
+
75
+
76
+
77
+ def main():
78
+ st.set_page_config("Chat PDF")
79
+ st.header("QnA with Multiple PDF files💁")
80
+
81
+ user_question = st.text_input("Ask a Question from the PDF Files")
82
+
83
+ if user_question:
84
+ user_input(user_question)
85
+
86
+ with st.sidebar:
87
+ st.title("Menu:")
88
+ pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True)
89
+ if st.button("Submit & Process"):
90
+ with st.spinner("Processing..."):
91
+ raw_text = get_pdf_text(pdf_docs)
92
+ text_chunks = get_text_chunks(raw_text)
93
+ get_vector_store(text_chunks)
94
+ st.success("Done")
95
+
96
+
97
+
98
+ if __name__ == "__main__":
99
+ main()