Added v2 Code to tree main
Browse files- app.py +18 -29
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,12 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
from langchain_community.vectorstores import FAISS
|
4 |
-
from
|
5 |
from langchain.prompts import PromptTemplate
|
6 |
from langchain_together import Together
|
7 |
-
from huggingface_hub import hf_hub_download
|
8 |
-
import faiss
|
9 |
-
import pickle
|
10 |
|
11 |
# Load embeddings
|
12 |
embeddings = HuggingFaceEmbeddings(
|
@@ -14,22 +11,12 @@ embeddings = HuggingFaceEmbeddings(
|
|
14 |
model_kwargs={"trust_remote_code": True, "revision": "289f532e14dbbbd5a04753fa58739e9ba766f3c7"}
|
15 |
)
|
16 |
|
17 |
-
# Download
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
# Download and load the pickle file
|
22 |
-
pkl_index_path = hf_hub_download(repo_id="sairamn/LawGPT", filename="index.pkl")
|
23 |
-
with open(pkl_index_path, 'rb') as f:
|
24 |
-
data = pickle.load(f)
|
25 |
|
26 |
-
#
|
27 |
-
|
28 |
-
docstore = data['docstore'] # Ensure 'docstore' key exists in your pickle file
|
29 |
-
index_to_docstore_id = data['index_to_docstore_id'] # Ensure 'index_to_docstore_id' key exists in your pickle file
|
30 |
-
|
31 |
-
# Now initializing the FAISS with required arguments
|
32 |
-
db = FAISS(embedding_function=embeddings.embed_documents, index=db, docstore=docstore, index_to_docstore_id=index_to_docstore_id)
|
33 |
db_retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 4})
|
34 |
|
35 |
# Define the prompt template for the chatbot
|
@@ -53,7 +40,7 @@ llm = Together(
|
|
53 |
together_api_key=TOGETHER_AI_API
|
54 |
)
|
55 |
|
56 |
-
# Create a function to
|
57 |
def ask_question(user_question):
|
58 |
# Retrieve relevant documents
|
59 |
context_docs = db_retriever.get_relevant_documents(user_question)
|
@@ -70,16 +57,18 @@ def ask_question(user_question):
|
|
70 |
|
71 |
# Generate an answer
|
72 |
response = llm(prompt.format(**input_data))
|
|
|
73 |
return response
|
74 |
|
75 |
-
# Gradio interface
|
76 |
iface = gr.Interface(
|
77 |
fn=ask_question,
|
78 |
-
inputs=gr.inputs.Textbox(label="Ask a question"),
|
79 |
-
outputs=
|
80 |
-
title="
|
81 |
-
description="Ask questions
|
82 |
)
|
83 |
|
84 |
-
# Launch the app
|
85 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from huggingface_hub import hf_hub_download
|
3 |
+
from langchain_community.vectorstores import FAISS
|
4 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
5 |
from langchain.prompts import PromptTemplate
|
6 |
from langchain_together import Together
|
|
|
|
|
|
|
7 |
|
8 |
# Load embeddings
|
9 |
embeddings = HuggingFaceEmbeddings(
|
|
|
11 |
model_kwargs={"trust_remote_code": True, "revision": "289f532e14dbbbd5a04753fa58739e9ba766f3c7"}
|
12 |
)
|
13 |
|
14 |
+
# Download FAISS index files from Hugging Face Hub
|
15 |
+
index_file = hf_hub_download(repo_id="sairamn/LawGPT", filename="index.faiss")
|
16 |
+
pkl_file = hf_hub_download(repo_id="sairamn/LawGPT", filename="index.pkl")
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
# Load FAISS index from the downloaded files
|
19 |
+
db = FAISS.load_local(index_file, embeddings, allow_dangerous_deserialization=True)
|
|
|
|
|
|
|
|
|
|
|
20 |
db_retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 4})
|
21 |
|
22 |
# Define the prompt template for the chatbot
|
|
|
40 |
together_api_key=TOGETHER_AI_API
|
41 |
)
|
42 |
|
43 |
+
# Create a function to process user input and generate responses
|
44 |
def ask_question(user_question):
|
45 |
# Retrieve relevant documents
|
46 |
context_docs = db_retriever.get_relevant_documents(user_question)
|
|
|
57 |
|
58 |
# Generate an answer
|
59 |
response = llm(prompt.format(**input_data))
|
60 |
+
|
61 |
return response
|
62 |
|
63 |
+
# Set up Gradio interface
|
64 |
iface = gr.Interface(
|
65 |
fn=ask_question,
|
66 |
+
inputs=gr.inputs.Textbox(label="Ask a Question", placeholder="Type your question here..."),
|
67 |
+
outputs="text",
|
68 |
+
title="Legal Chatbot",
|
69 |
+
description="Ask questions about the Indian Penal Code."
|
70 |
)
|
71 |
|
72 |
+
# Launch the Gradio app
|
73 |
+
if __name__ == "__main__":
|
74 |
+
iface.launch()
|
requirements.txt
CHANGED
@@ -2,8 +2,9 @@ langchain
|
|
2 |
faiss-cpu
|
3 |
together
|
4 |
transformers
|
5 |
-
sentence-transformers
|
6 |
langchain-community
|
7 |
langchain-together
|
8 |
einops
|
9 |
PyPDF2
|
|
|
|
|
|
2 |
faiss-cpu
|
3 |
together
|
4 |
transformers
|
|
|
5 |
langchain-community
|
6 |
langchain-together
|
7 |
einops
|
8 |
PyPDF2
|
9 |
+
huggingface-hub
|
10 |
+
gradio
|