File size: 10,559 Bytes
48e7c56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391







BSc: Logic and Discrete Mathematics
===================================






Contents
--------


* [1 Logic and Discrete Mathematics (Philosophy 1)](#Logic_and_Discrete_Mathematics_.28Philosophy_1.29)
	+ [1.1 Short Description](#Short_Description)
	+ [1.2 Course Topics](#Course_Topics)
	+ [1.3 Intended Learning Outcomes (ILOs)](#Intended_Learning_Outcomes_.28ILOs.29)
		- [1.3.1 What is the main purpose of this course?](#What_is_the_main_purpose_of_this_course.3F)
		- [1.3.2 ILOs defined at three levels](#ILOs_defined_at_three_levels)
			* [1.3.2.1 Level 1: What concepts should a student know/remember/explain?](#Level_1:_What_concepts_should_a_student_know.2Fremember.2Fexplain.3F)
			* [1.3.2.2 Level 2: What basic practical skills should a student be able to perform?](#Level_2:_What_basic_practical_skills_should_a_student_be_able_to_perform.3F)
			* [1.3.2.3 Level 3: What complex comprehensive skills should a student be able to apply in real-life scenarios?](#Level_3:_What_complex_comprehensive_skills_should_a_student_be_able_to_apply_in_real-life_scenarios.3F)
	+ [1.4 Grading](#Grading)
		- [1.4.1 Course grading range](#Course_grading_range)
		- [1.4.2 Course activities and grading breakdown](#Course_activities_and_grading_breakdown)
		- [1.4.3 Recommendations for students on how to succeed in the course](#Recommendations_for_students_on_how_to_succeed_in_the_course)
	+ [1.5 Resources, literature and reference materials](#Resources.2C_literature_and_reference_materials)
		- [1.5.1 Open access resources](#Open_access_resources)
	+ [1.6 Activities and Teaching Methods](#Activities_and_Teaching_Methods)
	+ [1.7 Formative Assessment and Course Activities](#Formative_Assessment_and_Course_Activities)
		- [1.7.1 Ongoing performance assessment](#Ongoing_performance_assessment)
			* [1.7.1.1 Section 1](#Section_1)
			* [1.7.1.2 Section 2](#Section_2)
			* [1.7.1.3 Section 3](#Section_3)
		- [1.7.2 Final assessment](#Final_assessment)
			* [1.7.2.1 Section 1](#Section_1_2)
			* [1.7.2.2 Section 2](#Section_2_2)
			* [1.7.2.3 Section 3](#Section_3_2)
		- [1.7.3 The retake exam](#The_retake_exam)



Logic and Discrete Mathematics (Philosophy 1)
=============================================


* **Course name**: Logic and Discrete Mathematics (Philosophy 1)
* **Code discipline**: CSE113
* **Subject area**: Math, Computer Science


Short Description
-----------------


This course consists of two distinct but overlapping parts: i. Logic; and ii. Discrete Mathematics.
The first part of the course is an introduction to formal symbolic logic. Philosopher John Locke once wrote that ``logic is the anatomy of thought. *This part of the course will teach* 
students to analyse and evaluate arguments using the formal techniques of modern symbolic logic.
The second part of the is designed for students to teach them basic notions of graph theory, discrete optimization and dynamic programming. This part will give practical experience with basic algorithms in discrete mathematics. 



Course Topics
-------------




Course Sections and Topics
| Section | Topics within the section
 |
| --- | --- |
| Basic of Logic | 1. Logical Operators
2. Truth Tables for Propositions
3. Propositional calculus
4. Quantifiers
5. Predicate Logic
6. Basic Proof Techniques in Math
7. Fundamental proofs
8. Use of propositional calculus to do proofs
 |
| Set Theory & Finite combinatorics
 | 1. Fundamentals of the set theory
2. From sets to relations
3. Functions and numbers
4. Algebra of binary relations
5. Principles of finite combinatorics
6. Recursion and Discrete Optimization
7. Linear recurrence relations
 |
| Basic of Graphs | 1. From set and relations to graphs
2. Euler tours and graphs
3. Hamilton paths and graphs
4. Planar graphs and Euler formula
5. Trees and Kőnig's infinity lemma
 |


Intended Learning Outcomes (ILOs)
---------------------------------


### What is the main purpose of this course?


This calculus course will provide an opportunity for participants to:



* understand key principles involved in differentiation and integration of functions
* solve problems that connect small-scale (differential) quantities to large-scale (integrated) quantities
* become familiar with the fundamental theorems of Calculus
* get hands-on experience with the integral and derivative applications and of the inverse relationship between integration and differentiation.


### ILOs defined at three levels


We specify the intended learning outcomes at three levels: conceptual knowledge, practical skills, and comprehensive skills.



#### Level 1: What concepts should a student know/remember/explain?


By the end of the course, the students should be able to ...



* know the categorical logic
* know the propositional logic
* know the predicate logic
* explain the difference between deduction and induction
* know the trees and spanning trees
* remember the Euler and Hamilton graphs
* know what is planar graphs
* explain the Dijkstra’s algorithm


#### Level 2: What basic practical skills should a student be able to perform?


By the end of the course, the students should be able to ...



* use Venn diagrams
* calculate truth values
* analyse formal structures of some arguments
* differ the deduction and induction
* build spanning trees
* find Euler tour and Hamilton path
* use Dijkstra’s algorithm
* solve maximum flow problem


#### Level 3: What complex comprehensive skills should a student be able to apply in real-life scenarios?


By the end of the course, the students should be able to ...
...



Grading
-------


### Course grading range





| Grade | Range | Description of performance
 |
| --- | --- | --- |
| A. Excellent | 85-100 | -
 |
| B. Good | 75-84 | -
 |
| C. Satisfactory | 60-74 | -
 |
| D. Fail | 0-59 | -
 |


### Course activities and grading breakdown





| Activity Type | Percentage of the overall course grade
 |
| --- | --- |
| Midterm | 40
 |
| Final exam | 40
 |
| In-class participation | 20
 |


### Recommendations for students on how to succeed in the course


* Participation is important. Attending lectures is the key to success in this course.
* Review lecture materials before classes to do well.
* Reading the recommended literature is obligatory, and will give you a deeper understanding of the material.


Resources, literature and reference materials
---------------------------------------------


### Open access resources


* K.H. Rosen, Discrete Mathematics and Its Applications (7th Edition). McGraw Hill, 2012.
* Lehman, E., Leighton, F. T., Meyer, A. R. (2017). *Mathematics for Computer Science. Massachusetts Institute of Technology Press.*


Activities and Teaching Methods
-------------------------------




Teaching and Learning Methods within each section
| Teaching Techniques | Section 1 | Section 2 | Section 3
 |
| --- | --- | --- | --- |
| Problem-based learning (students learn by solving open-ended problems without a strictly-defined solution) | 1 | 1 | 1
 |
| Project-based learning (students work on a project) | 0 | 0 | 0
 |
| Modular learning (facilitated self-study) | 0 | 0 | 0
 |
| Differentiated learning (provide tasks and activities at several levels of difficulty to fit students needs and level) | 1 | 1 | 1
 |
| Contextual learning (activities and tasks are connected to the real world to make it easier for students to relate to them) | 0 | 0 | 0
 |
| Business game (learn by playing a game that incorporates the principles of the material covered within the course) | 0 | 0 | 0
 |
| Inquiry-based learning | 0 | 0 | 0
 |
| Just-in-time teaching | 0 | 0 | 0
 |
| Process oriented guided inquiry learning (POGIL) | 0 | 0 | 0
 |
| Studio-based learning | 0 | 0 | 0
 |
| Universal design for learning | 0 | 0 | 0
 |
| Task-based learning | 0 | 0 | 0
 |




Activities within each section
| Learning Activities | Section 1 | Section 2 | Section 3
 |
| --- | --- | --- | --- |
| Lectures | 1 | 1 | 1
 |
| Interactive Lectures | 1 | 1 | 1
 |
| Lab exercises | 1 | 1 | 1
 |
| Experiments | 0 | 0 | 0
 |
| Modeling | 0 | 0 | 0
 |
| Cases studies | 0 | 0 | 0
 |
| Development of individual parts of software product code | 0 | 0 | 0
 |
| Individual Projects | 0 | 0 | 0
 |
| Group projects | 0 | 0 | 0
 |
| Flipped classroom | 0 | 0 | 0
 |
| Quizzes (written or computer based) | 1 | 1 | 1
 |
| Peer Review | 0 | 0 | 0
 |
| Discussions | 1 | 1 | 1
 |
| Presentations by students | 0 | 0 | 0
 |
| Written reports | 0 | 0 | 0
 |
| Simulations and role-plays | 0 | 0 | 0
 |
| Essays | 0 | 0 | 0
 |
| Oral Reports | 0 | 0 | 0
 |


Formative Assessment and Course Activities
------------------------------------------


### Ongoing performance assessment


#### Section 1


1. Solve Truth Tables
2. Use Truth Tables to analyse arguments
3. Use Quantifiers to assess inferences
4. What is Propositional Logic used for?
5. What is Predicate Logic used for?


#### Section 2


#### Section 3


1. What is the characteristic property of trees?
2. How to find an Euler tour?
3. What is a Hamilton path?
4. Why are K3 and K5,5 not planar?
5. What is the difference between undirected and directed graphs?
6. Why do we consider weighted graphs?
7. What practical problems are solved using Dijkstra's algorithm?
8. What is the maximum flow problem?


### Final assessment


#### Section 1


1. What is the difference between Categorical and Propositional Logic?
2. How does Predicate Logic differ from Categorical and Propositional Logic?
3. Why is Predicate Logic so important?
4. What are Truth-Functions and why do we use them?
5. Compute True Tables for Propositions
6. Compute True Tables for Arguments


#### Section 2


1. 


#### Section 3


1. Explain handshaking lemma.
2. Give necessary and sufficient conditions for the existence of an Euler tour.
3. Give sufficient conditions for the existence of a Hamilton path (theorems of Dirac and Ore).
4. Explain Kuratowski’s theorem.
5. Explain the difference between undirected and directed graphs.
6. Give the definition of weighted graphs?
7. Explain Dijkstra's algorithm?
8. What is the solution of the maximum flow problem (the Ford-Fulkerson algorithm)?


### The retake exam


Retakes will be run as a comprehensive exam, where the student will be assessed the acquired knowledge coming from the textbooks, the lectures, the labs, and the additional required reading material, as supplied by the instructor. During such comprehensive oral/written the student could be asked to solve exercises and to explain theoretical and practical aspects of the course.