import os, sys import cv2 import numpy as np from time import time from scipy.io import savemat import argparse from tqdm import tqdm, trange import torch import face_alignment import deep_3drecon from moviepy.editor import VideoFileClip import copy sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, network_size=4, device='cuda') face_reconstructor = deep_3drecon.Reconstructor() # landmark detection in Deep3DRecon def lm68_2_lm5(in_lm): # in_lm: shape=[68,2] lm_idx = np.array([31,37,40,43,46,49,55]) - 1 # 将上述特殊角点的数据取出,得到5个新的角点数据,拼接起来。 lm = np.stack([in_lm[lm_idx[0],:],np.mean(in_lm[lm_idx[[1,2]],:],0),np.mean(in_lm[lm_idx[[3,4]],:],0),in_lm[lm_idx[5],:],in_lm[lm_idx[6],:]], axis = 0) # 将第一个角点放在了第三个位置 lm = lm[[1,2,0,3,4],:2] return lm def process_video(fname, out_name=None): assert fname.endswith(".mp4") if out_name is None: out_name = fname[:-4] + '.npy' tmp_name = out_name[:-4] + '.doi' # if os.path.exists(tmp_name): # print("tmp exist, skip") # return # if os.path.exists(out_name): # print("out exisit, skip") # return os.system(f"touch {tmp_name}") cap = cv2.VideoCapture(fname) lm68_lst = [] lm5_lst = [] frame_rgb_lst = [] cnt = 0 while cap.isOpened(): ret, frame_bgr = cap.read() if frame_bgr is None: break frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB) try: lm68 = fa.get_landmarks(frame_rgb)[0] # 识别图片中的人脸,获得角点, shape=[68,2] except: print(f"Skip Item: Caught errors when fa.get_landmarks, maybe No face detected in some frames in {fname}!") # print(f"Caught error at {cnt}") cnt +=1 return None # continue lm5 = lm68_2_lm5(lm68) lm68_lst.append(lm68) lm5_lst.append(lm5) frame_rgb_lst.append(frame_rgb) cnt += 1 video_rgb = np.stack(frame_rgb_lst) # [t, 224,224, 3] lm68_arr = np.stack(lm68_lst).reshape([cnt, 68, 2]) lm5_arr = np.stack(lm5_lst).reshape([cnt, 5, 2]) num_frames = cnt batch_size = 32 iter_times = num_frames // batch_size last_bs = num_frames % batch_size coeff_lst = [] for i_iter in range(iter_times): start_idx = i_iter * batch_size batched_images = video_rgb[start_idx: start_idx + batch_size] batched_lm5 = lm5_arr[start_idx: start_idx + batch_size] coeff, align_img = face_reconstructor.recon_coeff(batched_images, batched_lm5, return_image = True) coeff_lst.append(coeff) if last_bs != 0: batched_images = video_rgb[-last_bs:] batched_lm5 = lm5_arr[-last_bs:] coeff, align_img = face_reconstructor.recon_coeff(batched_images, batched_lm5, return_image = True) coeff_lst.append(coeff) coeff_arr = np.concatenate(coeff_lst,axis=0) result_dict = { 'coeff': coeff_arr.reshape([cnt, -1]), 'lm68': lm68_arr.reshape([cnt, 68, 2]), 'lm5': lm5_arr.reshape([cnt, 5, 2]), } np.save(out_name, result_dict) os.system(f"rm {tmp_name}") def split_wav(mp4_name): wav_name = mp4_name[:-4] + '.wav' if os.path.exists(wav_name): return video = VideoFileClip(mp4_name,verbose=False) dur = video.duration audio = video.audio assert audio is not None audio.write_audiofile(wav_name,fps=16000,verbose=False,logger=None) if __name__ == '__main__': ### Process Single Long video for NeRF dataset # video_id = 'May' # video_fname = f"data/raw/videos/{video_id}.mp4" # out_fname = f"data/processed/videos/{video_id}/coeff.npy" # process_video(video_fname, out_fname) ### Process short video clips for LRS3 dataset from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument('--lrs3_path', type=int, default='/home/yezhenhui/datasets/raw/lrs3_raw', help='') parser.add_argument('--process_id', type=int, default=0, help='') parser.add_argument('--total_process', type=int, default=1, help='') args = parser.parse_args() import os, glob lrs3_dir = parser.lrs3_path mp4_name_pattern = os.path.join(lrs3_dir, "*/*.mp4") mp4_names = glob.glob(mp4_name_pattern) mp4_names = sorted(mp4_names) if args.total_process > 1: assert args.process_id <= args.total_process-1 num_samples_per_process = len(mp4_names) // args.total_process if args.process_id == args.total_process-1: mp4_names = mp4_names[args.process_id * num_samples_per_process : ] else: mp4_names = mp4_names[args.process_id * num_samples_per_process : (args.process_id+1) * num_samples_per_process] for mp4_name in tqdm(mp4_names, desc='extracting 3DMM...'): split_wav(mp4_name) process_video(mp4_name,out_name=mp4_name.replace(".mp4", "_coeff_pt.npy"))