import os import numpy as np from scipy.misc import face import torch from tqdm import trange import pickle from copy import deepcopy from data_util.face3d_helper import Face3DHelper from utils.commons.indexed_datasets import IndexedDataset, IndexedDatasetBuilder def load_video_npy(fn): assert fn.endswith(".npy") ret_dict = np.load(fn,allow_pickle=True).item() video_dict = { 'coeff': ret_dict['coeff'], # [T, h] 'lm68': ret_dict['lm68'], # [T, 68, 2] 'lm5': ret_dict['lm5'], # [T, 5, 2] } return video_dict def cal_lm3d_in_video_dict(video_dict, face3d_helper): coeff = torch.from_numpy(video_dict['coeff']).float() identity = coeff[:, 0:80] exp = coeff[:, 80:144] idexp_lm3d = face3d_helper.reconstruct_idexp_lm3d(identity, exp).cpu().numpy() video_dict['idexp_lm3d'] = idexp_lm3d def load_audio_npy(fn): assert fn.endswith(".npy") ret_dict = np.load(fn,allow_pickle=True).item() audio_dict = { "mel": ret_dict['mel'], # [T, 80] "f0": ret_dict['f0'], # [T,1] } return audio_dict if __name__ == '__main__': face3d_helper = Face3DHelper(use_gpu=False) import glob,tqdm prefixs = ['val', 'train'] binarized_ds_path = "data/binary/lrs3" os.makedirs(binarized_ds_path, exist_ok=True) for prefix in prefixs: databuilder = IndexedDatasetBuilder(os.path.join(binarized_ds_path, prefix), gzip=False) raw_base_dir = '/home/yezhenhui/datasets/raw/lrs3_raw' spk_ids = sorted([dir_name.split("/")[-1] for dir_name in glob.glob(raw_base_dir + "/*")]) spk_id2spk_idx = {spk_id : i for i,spk_id in enumerate(spk_ids) } np.save(os.path.join(binarized_ds_path, "spk_id2spk_idx.npy"), spk_id2spk_idx, allow_pickle=True) mp4_names = glob.glob(raw_base_dir + "/*/*.mp4") cnt = 0 for i, mp4_name in tqdm.tqdm(enumerate(mp4_names), total=len(mp4_names)): if prefix == 'train': if i % 100 == 0: continue else: if i % 100 != 0: continue lst = mp4_name.split("/") spk_id = lst[-2] clip_id = lst[-1][:-4] audio_npy_name = os.path.join(raw_base_dir, spk_id, clip_id+"_audio.npy") hubert_npy_name = os.path.join(raw_base_dir, spk_id, clip_id+"_hubert.npy") video_npy_name = os.path.join(raw_base_dir, spk_id, clip_id+"_coeff_pt.npy") if (not os.path.exists(audio_npy_name)) or (not os.path.exists(video_npy_name)): print(f"Skip item for not found.") continue if (not os.path.exists(hubert_npy_name)): print(f"Skip item for hubert_npy not found.") continue audio_dict = load_audio_npy(audio_npy_name) hubert = np.load(hubert_npy_name) video_dict = load_video_npy(video_npy_name) cal_lm3d_in_video_dict(video_dict, face3d_helper) mel = audio_dict['mel'] if mel.shape[0] < 64: # the video is shorter than 0.6s print(f"Skip item for too short.") continue audio_dict.update(video_dict) audio_dict['spk_id'] = spk_id audio_dict['spk_idx'] = spk_id2spk_idx[spk_id] audio_dict['item_id'] = spk_id + "_" + clip_id audio_dict['hubert'] = hubert # [T_x, hid=1024] databuilder.add_item(audio_dict) cnt += 1 databuilder.finalize() print(f"{prefix} set has {cnt} samples!")