Spaces:
Sleeping
Sleeping
Added app.py HbA1cData, requirements.txt
Browse files- Hba1cData/dim_patients_final_rev01.csv +0 -0
- Hba1cData/fact_visits_final_rev01.csv +0 -0
- app.py +63 -0
- requirements.txt +107 -0
Hba1cData/dim_patients_final_rev01.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Hba1cData/fact_visits_final_rev01.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
warnings.filterwarnings("ignore")
|
3 |
+
|
4 |
+
import streamlit as st
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import mlflow
|
8 |
+
import mlflow.sklearn
|
9 |
+
import os
|
10 |
+
from datetime import datetime
|
11 |
+
|
12 |
+
st.set_page_config(page_title="HBA1C Prediction", layout="centered")
|
13 |
+
|
14 |
+
df_patients = pd.read_csv("Hba1cData/dim_patients_final_rev01.csv")
|
15 |
+
patient_ids = df_patients['patient_id'].tolist()
|
16 |
+
|
17 |
+
# Set the MLflow tracking URI to DagsHub
|
18 |
+
mlflow.set_tracking_uri("https://dagshub.com/sakthi-t/healthcaremlflow.mlflow")
|
19 |
+
|
20 |
+
# Load the model from MLflow model registry
|
21 |
+
model_name = "ElasticnetHealthcareModel"
|
22 |
+
model_version = 3
|
23 |
+
model_uri = f"models:/{model_name}/{model_version}"
|
24 |
+
loaded_model = mlflow.sklearn.load_model(model_uri)
|
25 |
+
|
26 |
+
def predict_hba1c(patient_id, visited_date, sugar):
|
27 |
+
# Prepare input data
|
28 |
+
visited_date = pd.to_datetime(visited_date)
|
29 |
+
data = {
|
30 |
+
'patient_id': [patient_id],
|
31 |
+
'sugar': [sugar],
|
32 |
+
'year': [visited_date.year],
|
33 |
+
'month': [visited_date.month],
|
34 |
+
'day': [visited_date.day]
|
35 |
+
}
|
36 |
+
input_df = pd.DataFrame(data)
|
37 |
+
|
38 |
+
# Make prediction
|
39 |
+
prediction = loaded_model.predict(input_df)
|
40 |
+
return prediction[0]
|
41 |
+
|
42 |
+
# Streamlit interface
|
43 |
+
st.title("HBA1C Prediction")
|
44 |
+
st.write("Select Patient ID, Visited Date, and Sugar value to predict HBA1C.")
|
45 |
+
|
46 |
+
st.markdown(
|
47 |
+
"""
|
48 |
+
<div style="background-color: #FF9798; color: white; padding: 10px; border-radius: 5px;">
|
49 |
+
Choose sugar levels between 50 and 600. HBA1C levels are influenced by sugar values: higher sugar typically results in higher HBA1C.
|
50 |
+
This machine learning project uses synthetic data and is not a definitive method to determine HBA1C levels. For accurate results,
|
51 |
+
please select a date within 2024. The dataset contains dates from 2023 to April 2024. Patient names are fictional. Users can only select
|
52 |
+
from existing patient IDs, and there is no correlation between User ID and sugar levels.
|
53 |
+
</div>
|
54 |
+
""", unsafe_allow_html=True
|
55 |
+
)
|
56 |
+
|
57 |
+
patient_id = st.selectbox("Patient ID", patient_ids)
|
58 |
+
visited_date = st.date_input("Visited Date", min_value=datetime(2023, 1, 1), max_value=datetime(2024, 4, 30))
|
59 |
+
sugar = st.number_input("Sugar", min_value=50.0, max_value=600.0, value=100.0)
|
60 |
+
|
61 |
+
if st.button("Predict HBA1C"):
|
62 |
+
prediction = predict_hba1c(patient_id, visited_date, sugar)
|
63 |
+
st.write(f"Predicted HBA1C: {prediction}")
|
requirements.txt
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
alembic==1.13.1
|
2 |
+
altair==5.3.0
|
3 |
+
aniso8601==9.0.1
|
4 |
+
anyio==4.4.0
|
5 |
+
appdirs==1.4.4
|
6 |
+
attrs==23.2.0
|
7 |
+
backoff==2.2.1
|
8 |
+
blinker==1.8.2
|
9 |
+
boto3==1.34.115
|
10 |
+
botocore==1.34.115
|
11 |
+
cachetools==5.3.3
|
12 |
+
certifi==2024.2.2
|
13 |
+
charset-normalizer==3.3.2
|
14 |
+
click==8.1.7
|
15 |
+
cloudpickle==3.0.0
|
16 |
+
colorama==0.4.6
|
17 |
+
commonmark==0.9.1
|
18 |
+
contourpy==1.2.1
|
19 |
+
cycler==0.12.1
|
20 |
+
dacite==1.6.0
|
21 |
+
dagshub==0.3.27
|
22 |
+
dataclasses-json==0.6.6
|
23 |
+
Deprecated==1.2.14
|
24 |
+
docker==7.1.0
|
25 |
+
entrypoints==0.4
|
26 |
+
Flask==3.0.3
|
27 |
+
fonttools==4.52.4
|
28 |
+
fusepy==3.0.1
|
29 |
+
gitdb==4.0.11
|
30 |
+
GitPython==3.1.43
|
31 |
+
gql==3.5.0
|
32 |
+
graphene==3.3
|
33 |
+
graphql-core==3.2.3
|
34 |
+
graphql-relay==3.2.0
|
35 |
+
greenlet==3.0.3
|
36 |
+
h11==0.14.0
|
37 |
+
httpcore==0.16.3
|
38 |
+
httpx==0.23.3
|
39 |
+
idna==3.7
|
40 |
+
importlib-metadata==7.0.0
|
41 |
+
itsdangerous==2.2.0
|
42 |
+
Jinja2==3.1.4
|
43 |
+
jmespath==1.0.1
|
44 |
+
joblib==1.4.2
|
45 |
+
jsonschema==4.22.0
|
46 |
+
jsonschema-specifications==2023.12.1
|
47 |
+
kiwisolver==1.4.5
|
48 |
+
Mako==1.3.5
|
49 |
+
Markdown==3.6
|
50 |
+
markdown-it-py==3.0.0
|
51 |
+
MarkupSafe==2.1.5
|
52 |
+
marshmallow==3.21.2
|
53 |
+
matplotlib==3.9.0
|
54 |
+
mdurl==0.1.2
|
55 |
+
mlflow==2.13.0
|
56 |
+
multidict==6.0.5
|
57 |
+
mypy-extensions==1.0.0
|
58 |
+
numpy==1.26.4
|
59 |
+
opentelemetry-api==1.24.0
|
60 |
+
opentelemetry-sdk==1.24.0
|
61 |
+
opentelemetry-semantic-conventions==0.45b0
|
62 |
+
packaging==24.0
|
63 |
+
pandas==2.2.2
|
64 |
+
pathvalidate==3.0.0
|
65 |
+
pillow==10.3.0
|
66 |
+
protobuf==4.25.3
|
67 |
+
pyarrow==15.0.2
|
68 |
+
pydeck==0.9.1
|
69 |
+
Pygments==2.18.0
|
70 |
+
pyparsing==3.1.2
|
71 |
+
python-dateutil==2.9.0.post0
|
72 |
+
pytz==2024.1
|
73 |
+
pywin32==306
|
74 |
+
PyYAML==6.0.1
|
75 |
+
querystring-parser==1.2.4
|
76 |
+
referencing==0.35.1
|
77 |
+
requests==2.32.3
|
78 |
+
requests-toolbelt==1.0.0
|
79 |
+
rfc3986==1.5.0
|
80 |
+
rich==13.1.0
|
81 |
+
rpds-py==0.18.1
|
82 |
+
s3transfer==0.10.1
|
83 |
+
scikit-learn==1.5.0
|
84 |
+
scipy==1.13.1
|
85 |
+
setuptools==70.0.0
|
86 |
+
six==1.16.0
|
87 |
+
smmap==5.0.1
|
88 |
+
sniffio==1.3.1
|
89 |
+
SQLAlchemy==2.0.30
|
90 |
+
sqlparse==0.5.0
|
91 |
+
streamlit==1.35.0
|
92 |
+
tenacity==8.2.3
|
93 |
+
threadpoolctl==3.5.0
|
94 |
+
toml==0.10.2
|
95 |
+
toolz==0.12.1
|
96 |
+
tornado==6.4
|
97 |
+
treelib==1.6.4
|
98 |
+
typing-inspect==0.9.0
|
99 |
+
typing_extensions==4.12.0
|
100 |
+
tzdata==2024.1
|
101 |
+
urllib3==2.2.1
|
102 |
+
waitress==3.0.0
|
103 |
+
watchdog==4.0.1
|
104 |
+
Werkzeug==3.0.3
|
105 |
+
wrapt==1.16.0
|
106 |
+
yarl==1.9.4
|
107 |
+
zipp==3.19.0
|