Spaces:
Runtime error
Runtime error
File size: 19,168 Bytes
3a555af 66c5f43 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 0e4ed09 547c254 f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 7735bc8 0e4ed09 f9b640f 7735bc8 0e4ed09 f9b640f 3a555af f9b640f 3a555af f9b640f 66c5f43 f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af f9b640f 3a555af 04fdfa6 f9b640f 04fdfa6 3a555af 04fdfa6 3a555af f9b640f 3a555af 04fdfa6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 |
import nltk
import torch
from spacy.cli import download
download("en_core_web_sm")
nltk.download("stopwords")
from nltk.corpus import stopwords
en_stopwords = set(
list(stopwords.words("english"))
+ [
"summary",
"synopsis",
"overview",
"list",
"good",
"will",
"why",
"talk",
"long",
"above",
"looks",
"face",
"men",
"years",
"can",
"both",
"have",
"keep",
"yeah",
"said",
"bring",
"done",
"was",
"when",
"ask",
"now",
"very",
"kind",
"they",
"told",
"tell",
"ever",
"kill",
"hold",
"that",
"below",
"bit",
"knew",
"haven",
"few",
"place",
"could",
"says",
"huh",
"job",
"also",
"ain",
"may",
"heart",
"boy",
"with",
"over",
"son",
"else",
"found",
"see",
"any",
"phone",
"hasn",
"saw",
"these",
"maybe",
"into",
"thing",
"mom",
"god",
"old",
"aren",
"mustn",
"out",
"about",
"guy",
"each",
"most",
"like",
"then",
"wasn",
"being",
"all",
"door",
"look",
"run",
"sorry",
"again",
"won",
"man",
"gone",
"them",
"ago",
"doesn",
"gonna",
"girl",
"feel",
"work",
"much",
"hope",
"never",
"woman",
"went",
"lot",
"what",
"start",
"only",
"play",
"too",
"dad",
"going",
"yours",
"wrong",
"fine",
"made",
"one",
"want",
"isn",
"our",
"true",
"room",
"wanna",
"are",
"idea",
"sure",
"find",
"same",
"doing",
"off",
"put",
"turn",
"come",
"house",
"think",
"meet",
"hers",
"gotta",
"nor",
"away",
"leave",
"car",
"used",
"happy",
"the",
"care",
"seen",
"she",
"not",
"were",
"ours",
"their",
"first",
"world",
"lost",
"make",
"big",
"left",
"miss",
"shan",
"did",
"thank",
"ready",
"those",
"give",
"next",
"came",
"who",
"mind",
"does",
"right",
"her",
"let",
"didn",
"open",
"has",
"show",
"wife",
"yet",
"got",
"know",
"whole",
"some",
"such",
"alone",
"baby",
"him",
"nice",
"bad",
"move",
"new",
"dead",
"three",
"weren",
"whom",
"well",
"get",
"which",
"end",
"you",
"than",
"while",
"last",
"once",
"sir",
"from",
"need",
"wait",
"days",
"how",
"don",
"heard",
"own",
"hear",
"where",
"hey",
"okay",
"just",
"until",
"your",
"there",
"this",
"more",
"been",
"his",
"under",
"mean",
"might",
"here",
"its",
"but",
"stay",
"yes",
"guess",
"even",
"guys",
"hard",
"hadn",
"live",
"stop",
"took",
"still",
"other",
"since",
"every",
"needn",
"way",
"name",
"two",
"back",
"and",
"hello",
"head",
"use",
"must",
"for",
"life",
"die",
"day",
"down",
"wants",
"after",
"say",
"try",
"had",
"night",
]
)
import multiprocessing
import os
HF_TOKEN = os.getenv("HUGGING_FACE_HUB_TOKEN")
PASSWORD = os.getenv("PASSWORD")
import tqdm
import whoosh.index as whoosh_index
from whoosh.analysis import StemmingAnalyzer
from whoosh.fields import *
from whoosh.index import create_in
def get_content_ext(content, bm25_field):
return content
def yield_line_by_line(file):
with open(file) as input:
for l in input:
yield l
def recreate_bm25_idx(
content_data_store,
bm25_field="search",
idx_dir=".",
auto_create_bm25_idx=False,
idxs=None,
use_tqdm=True,
):
if type(content_data_store) is str:
content_data_store = yield_line_by_line(content_data_store)
schema = Schema(id=ID(stored=True), content=TEXT(analyzer=StemmingAnalyzer()))
# TODO determine how to clear out the whoosh index besides rm -rf _M* MAIN*
os.system(f"mkdir -p {idx_dir}/bm25_{bm25_field}")
need_reindex = auto_create_bm25_idx or not os.path.exists(
f"{idx_dir}/bm25_{bm25_field}/_MAIN_1.toc"
) # CHECK IF THIS IS RIGHT
if not need_reindex:
whoosh_ix = whoosh_index.open_dir(f"{idx_dir}/bm25_{bm25_field}")
else:
whoosh_ix = create_in(f"{idx_dir}/bm25_{bm25_field}", schema)
writer = whoosh_ix.writer(
multisegment=True, limitmb=1024, procs=multiprocessing.cpu_count()
)
# writer = self.whoosh_ix.writer(multisegment=True, procs=multiprocessing.cpu_count())
if hasattr(content_data_store, "tell"):
pos = content_data_store.tell()
content_data_store.seek(0, 0)
if idxs is not None:
idx_text_pairs = [(idx, content_data_store[idx]) for idx in idxs]
if use_tqdm:
data_iterator = tqdm.tqdm(idx_text_pairs)
else:
data_iterator = idx_text_pairs
else:
if use_tqdm:
data_iterator = tqdm.tqdm(enumerate(content_data_store))
else:
data_iterator = enumerate(content_data_store)
# TODO:
# self.indexer.reset_bm25_idx(0)
# data_iterator = self.indexer.process_bm25_field(content_data_store, **kwargs)
for idx, content in data_iterator:
content = get_content_ext(content, bm25_field)
if not content:
continue
writer.add_document(id=str(idx), content=content)
writer.commit()
return whoosh_index
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
safety_tokenizer = tokenizer = AutoTokenizer.from_pretrained(
"salexashenko/T5-Base-ROT-epoch-2-train-loss-1.3495-val-loss-1.4164",
use_auth_token=HF_TOKEN,
)
safety_model = model = (
AutoModelForSeq2SeqLM.from_pretrained(
"salexashenko/T5-Base-ROT-epoch-2-train-loss-1.3495-val-loss-1.4164",
use_auth_token=HF_TOKEN,
)
.half()
.cuda()
.eval()
)
from transformers import AutoModelForCausalLM, AutoTokenizer
blackcat_tokenizer = AutoTokenizer.from_pretrained(
"theblackcat102/galactica-1.3b-conversation-finetuned"
)
blackcat_model = (
AutoModelForCausalLM.from_pretrained(
"theblackcat102/galactica-1.3b-conversation-finetuned"
)
.half()
.cuda()
.eval()
)
t5_tokenizer = AutoTokenizer.from_pretrained("t5-small")
t5_model = (
AutoModelForSeq2SeqLM.from_pretrained("t5-small", torch_dtype=torch.half)
.half()
.eval()
.cuda()
)
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
AutoTokenizer,
OPTForCausalLM,
T5EncoderModel,
T5PreTrainedModel,
T5Tokenizer,
)
def run_model(input_string, model, tokenizer, device="cuda", **generator_args):
with torch.no_grad():
input_ids = tokenizer(input_string, padding=True, return_tensors="pt")
input_ids = input_ids.to(device)
input_ids["no_repeat_ngram_size"] = 4
for key, val in generator_args.items():
input_ids[key] = val
res = model.generate(**input_ids)
return [
ret.replace("..", ".")
.replace(".-", ".")
.replace("..", ".")
.replace("--", "-")
.replace("--", "-")
for ret in tokenizer.batch_decode(res, skip_special_tokens=True)
]
def run_python_and_return(s):
try:
ret = {"__ret": None}
exec(s, ret)
return ret["__ret"]
except:
return ""
from collections import Counter
import spacy
import wikipedia
from duckduckgo_search import ddg
nlp = spacy.load("en_core_web_sm")
def duck_duck_and_wikipedia_search(query, num_terms=4, max_docs=10):
ret = []
# using duckduckgo search
data = ddg(
query,
region="us-en",
safesearch="moderate",
)
data2 = [
(a["title"] + ". " + a["body"]).replace("?", ".").strip("?!.") for a in data
]
ret.append(data2)
doc = nlp(" ".join(data2))
query0 = [
a[0].strip("!.,;")
for a in Counter(
[e.text for e in doc.ents if e.label_ != "CARDINAL"]
).most_common(num_terms)
]
print(query0)
for query2 in query0:
search = wikipedia.search(query2)
for s in search[: max(1, int(max_docs / num_terms))]:
try:
page = wikipedia.WikipediaPage(s)
except:
continue
x = ["=" + x1 if "==" in x1 else x1 for x1 in page.content.split("\n=")]
ret.append(x)
if len(ret) > max_docs:
return ret
return ret
def generate_with_safety(
para,
model,
tokenizer,
do_safety=True,
do_execute_work=False,
backtrack_on_mismatched_work_answers=False,
return_answer_only=True,
do_search=False,
max_length=512,
do_self_contrastive=True,
contrative_guidance_embedding=None,
max_return_sequences=4,
ret=None,
do_sample=True,
do_beam=False,
device="cuda",
target_lang=None,
):
global safety_model, safety_tokenizer, t5_model, t5_tokenizer
if backtrack_on_mismatched_work_answers:
do_execute_work = True # TODO the backtracking inference
background = ""
para = para.strip()
if do_search:
data = ddg(
para,
region="us-en",
safesearch="moderate",
)
data2 = [a["body"].replace("?", ".").strip("?!., ") for a in data]
# there is a google paper that says using the summary of the search results is better. Need to look for that paper.
# also need a simple ngram filter to get rid of bad summaries and use the actual search results as a backup
# TODO: store reference URL so we can refer back to the URL in generated text. use ngram overlap (Roge score)
background = ". ".join(
[
s.replace("?", ".").lstrip(" ?,!.").rstrip(" ,")
for s in run_model(data2[:5], t5_model, t5_tokenizer, max_length=512)
]
)
# TODO: inject background knowledge into the instruciton.
# give me instructions on how to eat castor beans
background_lower = background.lower()
is_wrong = is_dangerous = False
# replace with a multi task classifier using the safety pipeline
if "immoral" in background_lower or "illegal" in background_lower:
if (
"not immoral" not in background_lower
and "not illegal" not in background_lower
):
is_wrong = True
if (
"lethal" in background_lower
or "dangerous" in background_lower
or " poison" in background_lower
):
if (
"not lethal" not in background_lower
and "not dangerous" not in background_lower
and "not poison" not in background_lower
):
is_dangerous = True
# print (is_wrong, is_dangerous)
safety_prefix = ""
if do_safety:
para2 = para.strip(".?:-")
if is_dangerous:
para2 += " which is dangerous"
elif is_wrong:
para2 += " which is wrong"
safety_prefix = run_model(para2, safety_model, safety_tokenizer)[0].strip(
"\"' "
)
if "wrong" in safety_prefix or "not right" in safety_prefix:
safety_prefix = f"As a chatbot, I cannot recommend this. {safety_prefix}"
if background:
# probably can do a rankgen match instead of keyword on "who", "what", "where", etc.
if para.split()[0].lower() not in {
"who",
"what",
"when",
"where",
"how",
"why",
"does",
"do",
"can",
"could",
"would",
"is",
"are",
"will",
"might",
"find",
"write",
"give",
} and not para.endswith("?"):
para = f"Background: {background}. <question> Complete this sentence: {para} <answer> "
else:
para = f"Background: {background}. <question> {para} <answer> "
if safety_prefix:
if "<answer>" not in para:
para += "<answer> " + safety_prefix + " "
else:
para += safety_prefix + " "
len_para = len(para)
if "<question>" in para:
len_para -= len("<question>")
if "<answer>" in para:
len_para -= len("<answer>")
if safety_model:
len_para -= len(safety_prefix + " ")
if "<answer>" not in para:
para += "<answer>"
print(para)
input_ids = tokenizer.encode(para, return_tensors="pt")
input_ids = input_ids.to(device)
if ret is None:
ret = {}
with torch.no_grad():
if do_sample:
# Here we use top_k / top_k random sampling. It generates more diverse queries, but of lower quality
outputs = model.generate(
input_ids=input_ids,
max_length=max_length,
no_repeat_ngram_size=4,
do_sample=True,
top_p=0.95,
penalty_alpha=0.6 if do_self_contrastive else None,
top_k=10,
num_return_sequences=max(1, int(max_return_sequences / 2))
if do_beam
else max_return_sequences,
)
for i in range(
len(outputs)
): # can use batch_decode, unless we want to do something special here
query = tokenizer.decode(outputs[i], skip_special_tokens=True)
if return_answer_only:
query = query[len_para:].lstrip(".? \n\t")
ret[query] = 1
if do_beam:
# Here we use Beam-search. It generates better quality queries, but with less diversity
outputs = model.generate(
input_ids=input_ids,
max_length=max_length,
num_beams=max(
int(max_return_sequences / 2)
if do_sample
else max_return_sequences,
5,
),
no_repeat_ngram_size=4,
penalty_alpha=0.6 if do_self_contrastive else None,
num_return_sequences=max(1, int(max_return_sequences / 2))
if do_sample
else max_return_sequences,
early_stopping=True,
)
for i in range(
len(outputs)
): # can use batch_decode, unless we want to do something special here
query = tokenizer.decode(outputs[i], skip_special_tokens=True)
if return_answer_only:
query = query[len_para:].lstrip(".? \n\t")
ret[query] = 1
# take care of the <work> tokens - let's execute the code
# TODO: do backtracking when code doesn't return the same answer as the answer in the generated text.
if do_execute_work: # galactica specific
for query in list(ret.keys()):
if "<work>" in query:
query2 = ""
for query_split in query.split("<work>"):
if "```" in query_split:
query_split = query_split.replace(
"""with open("output.txt", "w") as file:\n file.write""",
"__ret=",
)
code = (
query_split.split("</work>")[0]
.split("```")[1]
.split("```")[0]
)
query_split1, query_split2 = query_split.split(
"""<<read: "output.txt">>\n\n"""
)
old_answer2 = old_answer = query_split.split(
"""<<read: "output.txt">>\n\n"""
)[1].split("\n")[0]
work_answer = run_python_and_return(code)
if work_answer is not None:
try:
float(old_answer)
old_answer2 = float(old_answer)
work_answer = float(work_answer)
except:
pass
if old_answer2 != work_answer:
query_split2 = query_split2.replace(
old_answer, work_answer
)
query_split = (
query_split1 + "Computed Answer:" + query_split2
)
if query2:
query2 = query2 + "<work>" + query_split
else:
query2 = query_split
if query2 != query:
del ret[query]
ret[query2] = 1
return list(ret.keys())
import gradio as gr
def query_model(do_safety, do_search, text, access_code):
if access_code==PASSWORD:
return generate_with_safety(
text,
blackcat_model,
blackcat_tokenizer,
do_safety=do_safety,
do_search=do_search,
)
else:
raise Exception("Incorrect access code")
demo = gr.Interface(
query_model,
[
gr.Checkbox(label="Safety"),
gr.Checkbox(label="Search"),
gr.Textbox(
label="Prompt",
lines=5,
value="Teach me how to take over the world.",
),
gr.Textbox(label="Access Code", lines=1, value="")
],
["text", "text", "text", "text"],
)
if __name__ == "__main__":
demo.launch()
|