Spaces:
Sleeping
Sleeping
File size: 5,709 Bytes
9813b6b e39bb0b 9813b6b e39bb0b 9813b6b e39bb0b d9ef11d 9813b6b d9ef11d 9813b6b 5ee94a9 9813b6b d9ef11d 9813b6b e39bb0b 2e3cdd3 e39bb0b 9813b6b 2e3cdd3 9813b6b 3a18c7f 9813b6b 5ea41f6 9813b6b e39bb0b 9813b6b e39bb0b 9813b6b d9ef11d 9813b6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import os
import io
import argparse
import json
import openai
import sys
from dotenv import load_dotenv
from langchain_community.document_loaders import TextLoader
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.document_loaders import UnstructuredPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Vectara
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain.prompts import PromptTemplate
from langchain_text_splitters import RecursiveCharacterTextSplitter
load_dotenv()
MODEL_NAME = "mistralai/Mixtral-8x7B-Instruct-v0.1"
vectara_customer_id = os.environ['VECTARA_CUSTOMER_ID']
vectara_corpus_id = os.environ['VECTARA_CORPUS_ID']
vectara_api_key = os.environ['VECTARA_API_KEY']
embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-large")
vectara = Vectara(vectara_customer_id=vectara_customer_id,
vectara_corpus_id=vectara_corpus_id,
vectara_api_key=vectara_api_key)
summary_config = {"is_enabled": True, "max_results": 3, "response_lang": "eng"}
retriever = vectara.as_retriever(
search_kwargs={"k": 3, "summary_config": summary_config}
)
template = """
passage: You are a helpful assistant that understands BIM building documents.
passage: You will analyze BIM document metadata composed of filename, description, and engineering discipline.
passage: The metadata is written in German.
passage: Filename: {filename}, Description: {description}, Engineering discipline: {discipline}.
query: Does the filename match other filenames within the same discipline?
query: Does the description match the engineering discipline?
query: How different is the metadata to your curated information?
query: Highligh any discrepancies and comment on wether or not the metadata is anomalous.
"""
prompt = PromptTemplate(template=template, input_variables=['filename', 'description', 'discipline'])
def get_sources(documents):
return documents[:-1]
def get_summary(documents):
return documents[-1].page_content
def ingest(file_path):
try:
loader = PyPDFLoader(file_path)
documents = loader.load()
print('Loaded PyPDFLoader')
except Exception as e:
print(f'{e}')
loader = UnstructuredPDFLoader(file_path)
documents = loader.load()
print('Loaded UnstructuredPDFLoader')
finally:
# transform locally
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0,
separators=[
"\n\n",
"\n",
" ",
",",
"\uff0c", # Fullwidth comma
"\u3001", # Ideographic comma
"\uff0e", # Fullwidth full stop
# "\u200B", # Zero-width space (Asian languages)
# "\u3002", # Ideographic full stop (Asian languages)
"",
])
docs = text_splitter.split_documents(documents)
return docs
def generate_metadata(docs):
prompt_template = """
BimDiscipline = ['plumbing', 'network', 'heating', 'electrical', 'ventilation', 'architecture']
You are a helpful assistant that understands BIM documents and engineering disciplines. Your answer should be in JSON format and only include the filename, a short description, and the engineering discipline the document belongs to, distinguishing between {[d.value for d in BimDiscipline]} based on the given document."
Analyze the provided document, which could be in either German or English. Extract the filename, its description, and infer the engineering discipline it belongs to. Document:
context="
"""
# plain text
filepath = [doc.metadata for doc in docs][0]['source']
context = "".join(
[doc.page_content.replace('\n\n','').replace('..','') for doc in docs])
prompt = f'{prompt_template}{context}"\nFilepath:{filepath}'
#print(prompt)
# Create client
client = openai.OpenAI(
base_url="https://api.together.xyz/v1",
api_key=os.environ["TOGETHER_API_KEY"],
#api_key=userdata.get('TOGETHER_API_KEY'),
)
# Call the LLM with the JSON schema
chat_completion = client.chat.completions.create(
model=MODEL_NAME,
messages=[
{
"role": "system",
"content": f"You are a helpful assistant that responsds in JSON format"
},
{
"role": "user",
"content": prompt
}
]
)
return chat_completion.choices[0].message.content
#return json.loads(chat_completion.choices[0].message.content)
def analyze_metadata(filename, description, discipline):
formatted_prompt = prompt.format(filename=filename, description=description, discipline=discipline)
return (retriever | get_summary).invoke(formatted_prompt)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Generate metadata for a BIM document")
parser.add_argument("document", metavar="FILEPATH", type=str,
help="Path to the BIM document")
args = parser.parse_args()
if not os.path.exists(args.document) or not os.path.isfile(args.document):
print("File '{}' not found or not accessible.".format(args.document))
sys.exit(-1)
docs = ingest(args.document)
metadata = generate_metadata(docs)
print(metadata) |