File size: 3,920 Bytes
6744660
 
d0cc3af
6744660
fa08e7b
 
 
6744660
b2e9fa1
 
 
 
7c7d9e0
 
b2e9fa1
 
7c7d9e0
 
b2e9fa1
 
 
 
 
 
 
0cf35c4
 
b2e9fa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f09da71
 
b2e9fa1
 
e1bf216
b2e9fa1
 
f09da71
b2e9fa1
f09da71
b2e9fa1
 
 
 
f09da71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cf35c4
b2e9fa1
 
 
 
 
 
e1bf216
b2e9fa1
 
e1bf216
b2e9fa1
 
 
 
 
87ca907
b2e9fa1
 
 
 
 
 
 
 
 
 
 
 
 
9689d80
b2e9fa1
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
<!-- PROJECT TITLE -->
  <h1 align="center">DocVerifyRAG: Document Verification and Anomaly Detection</h1>
 <div id="header" align="center">
</div>
<h2 align="center">
 Description
</h2>
<p align="center"> DocVerifyRAG is a revolutionary tool designed to streamline document verification processes in hospitals. It utilizes AI to classify documents and identify mistakes in metadata, ensuring accurate and efficient document management. Inspired by the need for improved data accuracy in healthcare, DocVerifyRAG provides automated anomaly detection to identify misclassifications and errors in document metadata, enhancing data integrity and compliance with regulatory standards. </p>

## Table of Contents

<details>
<summary>DocVerifyRAG</summary>
  
- [Application Description](#application-description)
- [Table of Contents](#table-of-contents)
- [Local installation](#install-locally)
- [Install using Docker](#install-using-docker)
- [Usage](#usage)
- [Contributing](#contributing)
- [Authors](#authors)
- [License](#license)

</details>

## TRY the prototype
[DocVerifyRAG](https://docverify-rag.vercel.app)

## Screenshots

[Add screenshots here]

## Technology Stack

| Technology | Description                 |
| ---------- | --------------------------- |
| AI/ML      | Artificial Intelligence and Machine Learning |
| Python     | Programming Language        |
| Flask      | Web Framework               |
| Docker     | Containerization            |
| Tech Name    | Short description                    |

### Features

1. **Document Classification:**
    - Utilizes AI/ML algorithms to classify documents based on content and metadata.
    - Provides accurate and efficient document categorization for improved data management.

2. **Anomaly Detection:**
    - Identifies mistakes and misclassifications in document metadata through automated anomaly detection.
    - Enhances data integrity and accuracy by flagging discrepancies in document metadata.

3. **User-Friendly Interface:**
    - Offers a user-friendly web interface for easy document upload, classification, and verification.
    - Simplifies the document management process for hospital staff, reducing manual effort and errors.

### Install locally

#### Step 1 - Frontend

1. Clone the repository:
    ```bash
    $ git clone https://github.com/eliawaefler/DocVerifyRAG.git
    ```

2. Navigate to the frontend directory:
    ```bash
    $ cd DocVerifyRAG/frontend
    ```

3. Install dependencies:
    ```bash
    $ npm install
    ```
4. Run project:
    ```bash
    $ npm run dev
    ```

#### Step 2 - Backend

1. Navigate to the backend directory:
    ```bash
    $ cd DocVerifyRAG/backend
    ```

2. Install dependencies:
    ```bash
    $ pip install -r requirements.txt
    ```

### Install using Docker

To deploy DocVerifyRAG using Docker, follow these steps:

1. Pull the Docker image from Docker Hub:

    ```bash
    $ docker pull sandra/docverifyrag:latest
    ```

2. Run the Docker container:

    ```bash
    $ docker run -d -p 5000:5000 sandramsc/docverifyrag:latest
    ```

### Usage

Access the web interface and follow the prompts to upload documents, classify them, and verify metadata. The AI-powered anomaly detection system will automatically flag any discrepancies or errors in the document metadata, providing accurate and reliable document management solutions for hospitals.

## Authors

| Name           | Link                                      |
| -------------- | ----------------------------------------- |
| Sandra Ashipala | [GitHub](https://github.com/sandramsc) |
| Elia Wäfler | [GitHub](https://github.com/eliawaefler) |
| Carlos Salgado | [GitHub](https://github.com/salgadev) |
| Abdul Qadeer | [GitHub](https://github.com/AbdulQadeer-55) |

## License

[![GitLicense](https://img.shields.io/badge/License-MIT-lime.svg)](https://github.com/eliawaefler/DocVerifyRAG/blob/main/LICENSE)
____