Spaces:
Running
Running
import tempfile | |
import streamlit as st | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.embeddings import OpenAIEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.chat_models import ChatOpenAI | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
import os | |
import pickle | |
from datetime import datetime | |
from backend.generate_metadata import generate_metadata, ingest | |
MODEL_NAME = "mixtral" | |
css = ''' | |
<style> | |
.chat-message { | |
padding: 1.5rem; border-radius: 0.5rem; margin-bottom: 1rem; display: flex | |
} | |
.chat-message.user { | |
background-color: #2b313e | |
} | |
.chat-message.bot { | |
background-color: #475063 | |
} | |
.chat-message .avatar { | |
width: 20%; | |
} | |
.chat-message .avatar img { | |
max-width: 78px; | |
max-height: 78px; | |
border-radius: 50%; | |
object-fit: cover; | |
} | |
.chat-message .message { | |
width: 80%; | |
padding: 0 1.5rem; | |
color: #fff; | |
} | |
''' | |
bot_template = ''' | |
<div class="chat-message bot"> | |
<div class="avatar"> | |
<img src="https://i.ibb.co/cN0nmSj/Screenshot-2023-05-28-at-02-37-21.png" | |
style="max-height: 78px; max-width: 78px; border-radius: 50%; object-fit: cover;"> | |
</div> | |
<div class="message">{{MSG}}</div> | |
</div> | |
''' | |
user_template = ''' | |
<div class="chat-message user"> | |
<div class="avatar"> | |
<img src="https://i.ibb.co/rdZC7LZ/Photo-logo-1.png"> | |
</div> | |
<div class="message">{{MSG}}</div> | |
</div> | |
''' | |
def get_pdf_text(pdf_docs): | |
text = "" | |
for pdf in pdf_docs: | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
def get_text_chunks(text): | |
text_splitter = CharacterTextSplitter( | |
separator="\n", | |
chunk_size=1000, | |
chunk_overlap=200, | |
length_function=len | |
) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def get_vectorstore(text_chunks): | |
embeddings = OpenAIEmbeddings() | |
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") | |
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
return vectorstore | |
def get_conversation_chain(vectorstore): | |
llm = ChatOpenAI() | |
# llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512}) | |
memory = ConversationBufferMemory( | |
memory_key='chat_history', return_messages=True) | |
conversation_chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=vectorstore.as_retriever(), | |
memory=memory | |
) | |
return conversation_chain | |
def handle_userinput(user_question): | |
response = st.session_state.conversation({'question': user_question}) | |
st.session_state.chat_history = response['chat_history'] | |
for i, message in enumerate(st.session_state.chat_history): | |
# Display user message | |
if i % 2 == 0: | |
st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True) | |
else: | |
print(message) | |
# Display AI response | |
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True) | |
def safe_vec_store(): | |
# USE VECTARA INSTEAD | |
os.makedirs('vectorstore', exist_ok=True) | |
filename = 'vectors' + datetime.now().strftime('%Y%m%d%H%M') + '.pkl' | |
file_path = os.path.join('vectorstore', filename) | |
vector_store = st.session_state.vectorstore | |
# Serialize and save the entire FAISS object using pickle | |
with open(file_path, 'wb') as f: | |
pickle.dump(vector_store, f) | |
""" | |
def main(): | |
st.subheader("Your documents") | |
if st.session_state.classify: | |
pdf_doc = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=False) | |
else: | |
pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=True) | |
filenames = [file.name for file in pdf_docs if file is not None] | |
if st.button("Process"): | |
with st.spinner("Processing"): | |
if st.session_state.classify: | |
# THE CLASSIFICATION APP | |
st.write("Classifying") | |
plain_text_doc = ingest(pdf_doc.name) | |
classification_result = generate_metadata(plain_text_doc) | |
st.write(classification_result) | |
else: | |
# NORMAL RAG | |
loaded_vec_store = None | |
for filename in filenames: | |
if ".pkl" in filename: | |
file_path = os.path.join('vectorstore', filename) | |
with open(file_path, 'rb') as f: | |
loaded_vec_store = pickle.load(f) | |
raw_text = get_pdf_text(pdf_docs) | |
text_chunks = get_text_chunks(raw_text) | |
vec = get_vectorstore(text_chunks) | |
if loaded_vec_store: | |
vec.merge_from(loaded_vec_store) | |
st.warning("loaded vectorstore") | |
if "vectorstore" in st.session_state: | |
vec.merge_from(st.session_state.vectorstore) | |
st.warning("merged to existing") | |
st.session_state.vectorstore = vec | |
st.session_state.conversation = get_conversation_chain(vec) | |
st.success("data loaded") | |
if "conversation" not in st.session_state: | |
st.session_state.conversation = None | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = None | |
user_question = st.text_input("Ask a question about your documents:") | |
if user_question: | |
handle_userinput(user_question) | |
with st.sidebar: | |
st.subheader("Classification instructions") | |
classifier_docs = st.file_uploader("Upload your instructions here and click on 'Process'", | |
accept_multiple_files=True) | |
filenames = [file.name for file in classifier_docs if file is not None] | |
if st.button("Process Classification"): | |
st.session_state.classify = True | |
with st.spinner("Processing"): | |
st.warning("set classify") | |
time.sleep(3) | |
if st.button("Save Embeddings"): | |
if "vectorstore" in st.session_state: | |
safe_vec_store() | |
# st.session_state.vectorstore.save_local("faiss_index") | |
st.sidebar.success("saved") | |
else: | |
st.sidebar.warning("No embeddings to save. Please process documents first.") | |
if st.button("Load Embeddings"): | |
st.warning("this function is not in use, just upload the vectorstore") | |
""" | |
def main(): | |
st.set_page_config(page_title="Doc Verify RAG", page_icon=":mag:") | |
st.write('Anomaly detection for document metadata', unsafe_allow_html=True) | |
st.header("Doc Verify RAG :mag:") | |
def set_pw(): | |
st.session_state.openai_api_key = True | |
if "openai_api_key" not in st.session_state: | |
st.session_state.openai_api_key = False | |
if "openai_org" not in st.session_state: | |
st.session_state.openai_org = False | |
if "classify" not in st.session_state: | |
st.session_state.classify = False | |
col1, col2 = st.columns(2) | |
with col1: | |
uploaded_file = st.file_uploader("Choose a PDF file", type=["pdf", "txt"]) | |
if uploaded_file is not None: | |
try: | |
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]) as tmp: | |
tmp.write(uploaded_file.read()) | |
file_path = tmp.name | |
st.write(f'Created temporary file {file_path}') | |
docs = ingest(file_path) | |
st.write('## Querying Together.ai API') | |
metadata = generate_metadata(docs) | |
st.write(f'## Metadata Generated by {MODEL_NAME}') | |
st.write(metadata) | |
# Clean up the temporary file | |
os.remove(file_path) | |
except Exception as e: | |
st.error(f'Error: {e}') | |
with col2: | |
OPENAI_API_KEY = st.text_input("OPENAI API KEY:", type="password", | |
disabled=st.session_state.openai_api_key, on_change=set_pw) | |
classification = st.file_uploader("upload the metadata", type=["csv", "txt"]) | |
if __name__ == '__main__': | |
main() | |