Spaces:
Sleeping
Sleeping
import streamlit as st | |
from dotenv import load_dotenv | |
from PyPDF2 import PdfReader | |
from langchain import embeddings | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.vectorstores import faiss | |
from langchain.chat_models import ChatOpenAI | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from html_templates import css, bot_template, user_template | |
from langchain.llms import HuggingFaceHub | |
import os | |
import pickle | |
from datetime import datetime | |
def get_pdf_text(pdf_docs): | |
text = "" | |
for pdf in pdf_docs: | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
def get_text_chunks(text): | |
text_splitter = CharacterTextSplitter( | |
separator="\n", | |
chunk_size=1000, | |
chunk_overlap=200, | |
length_function=len | |
) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def get_vectorstore(text_chunks): | |
embeddings = OpenAIEmbeddings() | |
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") | |
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
return vectorstore | |
def get_conversation_chain(vectorstore): | |
llm = ChatOpenAI() | |
# llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512}) | |
memory = ConversationBufferMemory( | |
memory_key='chat_history', return_messages=True) | |
conversation_chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=vectorstore.as_retriever(), | |
memory=memory | |
) | |
return conversation_chain | |
def handle_userinput(user_question): | |
response = st.session_state.conversation({'question': user_question}) | |
st.session_state.chat_history = response['chat_history'] | |
for i, message in enumerate(st.session_state.chat_history): | |
# Display user message | |
if i % 2 == 0: | |
st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True) | |
else: | |
print(message) | |
# Display AI response | |
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True) | |
# Display source document information if available in the message | |
if hasattr(message, 'source') and message.source: | |
st.write(f"Source Document: {message.source}", unsafe_allow_html=True) | |
def safe_vec_store(): | |
os.makedirs('vectorstore', exist_ok=True) | |
filename = 'vectores' + datetime.now().strftime('%Y%m%d%H%M') + '.pkl' | |
file_path = os.path.join('vectorstore', filename) | |
vector_store = st.session_state.vectorstore | |
# Serialize and save the entire FAISS object using pickle | |
with open(file_path, 'wb') as f: | |
pickle.dump(vector_store, f) | |
def main(): | |
load_dotenv() | |
st.set_page_config(page_title="DOC Verify RAG", page_icon=":hospital:") | |
st.write(css, unsafe_allow_html=True) | |
st.subheader("Your documents") | |
pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=True) | |
filenames = [file.name for file in pdf_docs if file is not None] | |
if "conversation" not in st.session_state: | |
st.session_state.conversation = None | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = None | |
st.header("DOC Verify RAG :hospital:") | |
user_question = st.text_input("Ask a question about your documents:") | |
if user_question: | |
handle_userinput(user_question) | |
with st.sidebar: | |
st.subheader("Classification Instrucitons") | |
classifier_docs = st.file_uploader("Upload your instructions here and click on 'Process'", accept_multiple_files=True) | |
filenames = [file.name for file in classifier_docs if file is not None] | |
if st.button("Process"): | |
with st.spinner("Processing"): | |
loaded_vec_store = None | |
for filename in filenames: | |
if ".pkl" in filename: | |
file_path = os.path.join('vectorstore', filename) | |
with open(file_path, 'rb') as f: | |
loaded_vec_store = pickle.load(f) | |
raw_text = get_pdf_text(pdf_docs) | |
text_chunks = get_text_chunks(raw_text) | |
vec = get_vectorstore(text_chunks) | |
if loaded_vec_store: | |
vec.merge_from(loaded_vec_store) | |
st.warning("loaded vectorstore") | |
if "vectorstore" in st.session_state: | |
vec.merge_from(st.session_state.vectorstore) | |
st.warning("merged to existing") | |
st.session_state.vectorstore = vec | |
st.session_state.conversation = get_conversation_chain(vec) | |
st.success("data loaded") | |
# Save and Load Embeddings | |
if st.button("Save Embeddings"): | |
if "vectorstore" in st.session_state: | |
safe_vec_store() | |
# st.session_state.vectorstore.save_local("faiss_index") | |
st.sidebar.success("safed") | |
else: | |
st.sidebar.warning("No embeddings to save. Please process documents first.") | |
if st.button("Load Embeddings"): | |
st.warning("this function is not in use, just upload the vectorstore") | |
if __name__ == '__main__': | |
main() | |