Spaces:
Running
Running
import io | |
import os | |
import streamlit as st | |
import tempfile | |
from scripts import analyze_metadata, generate_metadata, ingest, MODEL_NAME | |
st.title('# DocVerifyRAG') | |
st.write('## Anomaly detection for BIM document metadata') | |
def suggest_metadata(file_upload): | |
extension = uploaded_file.name.split('.')[-1] | |
with tempfile.NamedTemporaryFile(delete=False) as tmp: | |
tmp.write(uploaded_file.read()) | |
st.write(f'Created temporary file {tmp.name}') | |
st.write('## Ingesting Unstructured file') | |
docs = ingest(tmp.name) | |
print(f'Ingested {tmp.name}') | |
metadata = generate_metadata(docs) | |
st.write('## Querying Together.ai API') | |
st.write(f'### Suggested Metadata Generated by {MODEL_NAME}') | |
st.write(f'#### {metadata}') | |
with st.form('analyze_form'): | |
st.write('Enter your file metadata in the following schema:') | |
text = st.text_input(label='Filename, Description, Discipline', | |
value="", placeholder=str) | |
submitted = st.form_submit_button('Submit') | |
if submitted: | |
filename, description, discipline = text.split(',') | |
st.write('## Analyzing with Vectara + together.ai') | |
analysis = analyze_metadata(filename, description, discipline) | |
st.write(analysis) | |
submitted = None | |
st.write('## Generate metadata?') | |
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf") | |
if uploaded_file is not None: | |
query_api = st.button('Query API') | |
if query_api: | |
suggest_metadata(uploaded_file) | |
query_api = None |