Spaces:
Sleeping
Sleeping
Carlos Salgado
commited on
Commit
•
16c1bbd
1
Parent(s):
f3f79d9
add notebooks, rename and polish generate_metadata.py
Browse files- backend/generate_metadata.py +16 -26
- notebooks/preprocess_dataset.ipynb +467 -0
- notebooks/vectarize.ipynb +239 -0
backend/generate_metadata.py
CHANGED
@@ -9,29 +9,8 @@ from langchain_community.document_loaders import UnstructuredPDFLoader
|
|
9 |
from langchain_community.embeddings.fake import FakeEmbeddings
|
10 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
11 |
|
12 |
-
from langchain_community.vectorstores import Vectara
|
13 |
-
|
14 |
-
from backend.schema import Metadata, BimDiscipline
|
15 |
-
|
16 |
load_dotenv()
|
17 |
|
18 |
-
vectara_customer_id = os.environ['VECTARA_CUSTOMER_ID']
|
19 |
-
vectara_corpus_id = os.environ['VECTARA_CORPUS_ID']
|
20 |
-
vectara_api_key = os.environ['VECTARA_API_KEY']
|
21 |
-
|
22 |
-
vectorstore = Vectara(vectara_customer_id=vectara_customer_id,
|
23 |
-
vectara_corpus_id=vectara_corpus_id,
|
24 |
-
vectara_api_key=vectara_api_key)
|
25 |
-
|
26 |
-
prompt_template = """
|
27 |
-
BimDiscipline = ['plumbing', 'network', 'heating', 'electrical', 'ventilation', 'architecture']
|
28 |
-
|
29 |
-
You are a helpful assistant that understands BIM documents and engineering disciplines. Your answer should be in JSON format and only include the title, a brief one-sentence summary, and the discipline the document belongs to, distinguishing between {[d.value for d in BimDiscipline]} based on the given document."
|
30 |
-
|
31 |
-
Analyze the provided document, which could be in either German or English. Extract the title, summarize it briefly in one sentence, and infer the discipline. Document:
|
32 |
-
context="
|
33 |
-
"""
|
34 |
-
|
35 |
|
36 |
def ingest(file_path):
|
37 |
extension = file_path.split('.')[-1]
|
@@ -63,18 +42,29 @@ def ingest(file_path):
|
|
63 |
return docs
|
64 |
|
65 |
|
|
|
|
|
|
|
66 |
|
67 |
-
|
|
|
|
|
|
|
|
|
68 |
# plain text
|
|
|
69 |
context = "".join(
|
70 |
[doc.page_content.replace('\n\n','').replace('..','') for doc in docs])
|
71 |
|
72 |
-
prompt = f'{prompt_template}{context}"'
|
73 |
|
|
|
|
|
74 |
# Create client
|
75 |
client = openai.OpenAI(
|
76 |
base_url="https://api.together.xyz/v1",
|
77 |
api_key=os.environ["TOGETHER_API_KEY"],
|
|
|
78 |
)
|
79 |
|
80 |
# Call the LLM with the JSON schema
|
@@ -91,8 +81,8 @@ def extract_metadata(docs):
|
|
91 |
}
|
92 |
]
|
93 |
)
|
94 |
-
|
95 |
-
return json.loads(chat_completion.choices[0].message.content)
|
96 |
|
97 |
|
98 |
if __name__ == "__main__":
|
@@ -107,5 +97,5 @@ if __name__ == "__main__":
|
|
107 |
sys.exit(-1)
|
108 |
|
109 |
docs = ingest(args.document)
|
110 |
-
metadata =
|
111 |
print(metadata)
|
|
|
9 |
from langchain_community.embeddings.fake import FakeEmbeddings
|
10 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
11 |
|
|
|
|
|
|
|
|
|
12 |
load_dotenv()
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
def ingest(file_path):
|
16 |
extension = file_path.split('.')[-1]
|
|
|
42 |
return docs
|
43 |
|
44 |
|
45 |
+
def generate_metadata(docs):
|
46 |
+
prompt_template = """
|
47 |
+
BimDiscipline = ['plumbing', 'network', 'heating', 'electrical', 'ventilation', 'architecture']
|
48 |
|
49 |
+
You are a helpful assistant that understands BIM documents and engineering disciplines. Your answer should be in JSON format and only include the filename, a short description, and the engineering discipline the document belongs to, distinguishing between {[d.value for d in BimDiscipline]} based on the given document."
|
50 |
+
|
51 |
+
Analyze the provided document, which could be in either German or English. Extract the filename, its description, and infer the engineering discipline it belongs to. Document:
|
52 |
+
context="
|
53 |
+
"""
|
54 |
# plain text
|
55 |
+
filepath = [doc.metadata for doc in docs][0]['source']
|
56 |
context = "".join(
|
57 |
[doc.page_content.replace('\n\n','').replace('..','') for doc in docs])
|
58 |
|
59 |
+
prompt = f'{prompt_template}{context}"\nFilepath:{filepath}'
|
60 |
|
61 |
+
#print(prompt)
|
62 |
+
|
63 |
# Create client
|
64 |
client = openai.OpenAI(
|
65 |
base_url="https://api.together.xyz/v1",
|
66 |
api_key=os.environ["TOGETHER_API_KEY"],
|
67 |
+
#api_key=userdata.get('TOGETHER_API_KEY'),
|
68 |
)
|
69 |
|
70 |
# Call the LLM with the JSON schema
|
|
|
81 |
}
|
82 |
]
|
83 |
)
|
84 |
+
|
85 |
+
return json.loads(chat_completion.choices[0].message.content)
|
86 |
|
87 |
|
88 |
if __name__ == "__main__":
|
|
|
97 |
sys.exit(-1)
|
98 |
|
99 |
docs = ingest(args.document)
|
100 |
+
metadata = generate_metadata(docs)
|
101 |
print(metadata)
|
notebooks/preprocess_dataset.ipynb
ADDED
@@ -0,0 +1,467 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 106,
|
6 |
+
"metadata": {
|
7 |
+
"id": "f-ERaM64ONeC"
|
8 |
+
},
|
9 |
+
"outputs": [],
|
10 |
+
"source": [
|
11 |
+
"# preprocess csv\n",
|
12 |
+
"import pandas as pd\n",
|
13 |
+
"filename = '/content/U3_Metadaten.csv'\n",
|
14 |
+
"df = pd.read_csv(filename, on_bad_lines='skip')"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": 118,
|
20 |
+
"metadata": {
|
21 |
+
"colab": {
|
22 |
+
"base_uri": "https://localhost:8080/",
|
23 |
+
"height": 424
|
24 |
+
},
|
25 |
+
"id": "AYxRURTvQiFb",
|
26 |
+
"outputId": "18bf4139-47ac-4939-e635-9f09f560200c"
|
27 |
+
},
|
28 |
+
"outputs": [
|
29 |
+
{
|
30 |
+
"data": {
|
31 |
+
"application/vnd.google.colaboratory.intrinsic+json": {
|
32 |
+
"summary": "{\n \"name\": \"clean_df\",\n \"rows\": 158,\n \"fields\": [\n {\n \"column\": \"Name\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 158,\n \"samples\": [\n \"ISB-020-U3-W-R-01-B17012-028-000\",\n \"ISB-020-U3-W-L-01-B15100-018-000\",\n \"ISB-020-U3-W-R-01-B17012-034-000\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Beschreibung\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 40,\n \"samples\": [\n \"Foto\",\n \"Bodenheizung / Ventileinstellung / FBH AB PM\",\n \"Foto - Novocon S demontiert und Stellenantriebe montiert!\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Disziplin\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 6,\n \"samples\": [\n \"D - Datennetz\",\n \"E - Elektroanlagen\",\n \"S - Sanitaer\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
|
33 |
+
"type": "dataframe",
|
34 |
+
"variable_name": "clean_df"
|
35 |
+
},
|
36 |
+
"text/html": [
|
37 |
+
"\n",
|
38 |
+
" <div id=\"df-3f4ad131-d55b-46a5-8dff-6fa3e12c15b0\" class=\"colab-df-container\">\n",
|
39 |
+
" <div>\n",
|
40 |
+
"<style scoped>\n",
|
41 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
42 |
+
" vertical-align: middle;\n",
|
43 |
+
" }\n",
|
44 |
+
"\n",
|
45 |
+
" .dataframe tbody tr th {\n",
|
46 |
+
" vertical-align: top;\n",
|
47 |
+
" }\n",
|
48 |
+
"\n",
|
49 |
+
" .dataframe thead th {\n",
|
50 |
+
" text-align: right;\n",
|
51 |
+
" }\n",
|
52 |
+
"</style>\n",
|
53 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
54 |
+
" <thead>\n",
|
55 |
+
" <tr style=\"text-align: right;\">\n",
|
56 |
+
" <th></th>\n",
|
57 |
+
" <th>Name</th>\n",
|
58 |
+
" <th>Beschreibung</th>\n",
|
59 |
+
" <th>Disziplin</th>\n",
|
60 |
+
" </tr>\n",
|
61 |
+
" </thead>\n",
|
62 |
+
" <tbody>\n",
|
63 |
+
" <tr>\n",
|
64 |
+
" <th>0</th>\n",
|
65 |
+
" <td>ISB-020-U3-W-D-01-B07005-001-000</td>\n",
|
66 |
+
" <td>Bauarten und Stuecknachweis SGK</td>\n",
|
67 |
+
" <td>D - Datennetz</td>\n",
|
68 |
+
" </tr>\n",
|
69 |
+
" <tr>\n",
|
70 |
+
" <th>1</th>\n",
|
71 |
+
" <td>ISB-020-U3-W-D-01-B07005-002-000</td>\n",
|
72 |
+
" <td>Bauarten und Stuecknachweis SGK</td>\n",
|
73 |
+
" <td>D - Datennetz</td>\n",
|
74 |
+
" </tr>\n",
|
75 |
+
" <tr>\n",
|
76 |
+
" <th>2</th>\n",
|
77 |
+
" <td>ISB-020-U3-W-D-01-B07005-003-000</td>\n",
|
78 |
+
" <td>Pruefprotokoll nach DIN EN 61439-1/3</td>\n",
|
79 |
+
" <td>D - Datennetz</td>\n",
|
80 |
+
" </tr>\n",
|
81 |
+
" <tr>\n",
|
82 |
+
" <th>3</th>\n",
|
83 |
+
" <td>ISB-020-U3-W-D-01-B07005-004-000</td>\n",
|
84 |
+
" <td>Pruefprotokoll nach DIN EN 61439-1/3</td>\n",
|
85 |
+
" <td>D - Datennetz</td>\n",
|
86 |
+
" </tr>\n",
|
87 |
+
" <tr>\n",
|
88 |
+
" <th>4</th>\n",
|
89 |
+
" <td>ISB-020-U3-W-D-01-B18012-001-000</td>\n",
|
90 |
+
" <td>Sicherungslegende G-020 U3 779-AS 1</td>\n",
|
91 |
+
" <td>D - Datennetz</td>\n",
|
92 |
+
" </tr>\n",
|
93 |
+
" <tr>\n",
|
94 |
+
" <th>...</th>\n",
|
95 |
+
" <td>...</td>\n",
|
96 |
+
" <td>...</td>\n",
|
97 |
+
" <td>...</td>\n",
|
98 |
+
" </tr>\n",
|
99 |
+
" <tr>\n",
|
100 |
+
" <th>153</th>\n",
|
101 |
+
" <td>ISB-020-U3-W-S-01-B17012-008-000</td>\n",
|
102 |
+
" <td>Foto</td>\n",
|
103 |
+
" <td>S - Sanitaer</td>\n",
|
104 |
+
" </tr>\n",
|
105 |
+
" <tr>\n",
|
106 |
+
" <th>159</th>\n",
|
107 |
+
" <td>ISB-020-U3-W-S-01-B17012-010-000</td>\n",
|
108 |
+
" <td>Foto</td>\n",
|
109 |
+
" <td>S - Sanitaer</td>\n",
|
110 |
+
" </tr>\n",
|
111 |
+
" <tr>\n",
|
112 |
+
" <th>160</th>\n",
|
113 |
+
" <td>ISB-020-U3-W-S-01-B17012-011-000</td>\n",
|
114 |
+
" <td>Foto</td>\n",
|
115 |
+
" <td>S - Sanitaer</td>\n",
|
116 |
+
" </tr>\n",
|
117 |
+
" <tr>\n",
|
118 |
+
" <th>161</th>\n",
|
119 |
+
" <td>ISB-020-U3-W-S-01-B18003-001-020</td>\n",
|
120 |
+
" <td>Schieber / Hawle / Schieber 4000 + Handrad 780...</td>\n",
|
121 |
+
" <td>S - Sanitaer</td>\n",
|
122 |
+
" </tr>\n",
|
123 |
+
" <tr>\n",
|
124 |
+
" <th>162</th>\n",
|
125 |
+
" <td>ISB-020-U3-W-S-01-B19009-001-020</td>\n",
|
126 |
+
" <td>Schieber / Hawle / 4000 Schutzraum</td>\n",
|
127 |
+
" <td>S - Sanitaer</td>\n",
|
128 |
+
" </tr>\n",
|
129 |
+
" </tbody>\n",
|
130 |
+
"</table>\n",
|
131 |
+
"<p>158 rows × 3 columns</p>\n",
|
132 |
+
"</div>\n",
|
133 |
+
" <div class=\"colab-df-buttons\">\n",
|
134 |
+
"\n",
|
135 |
+
" <div class=\"colab-df-container\">\n",
|
136 |
+
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-3f4ad131-d55b-46a5-8dff-6fa3e12c15b0')\"\n",
|
137 |
+
" title=\"Convert this dataframe to an interactive table.\"\n",
|
138 |
+
" style=\"display:none;\">\n",
|
139 |
+
"\n",
|
140 |
+
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
|
141 |
+
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
|
142 |
+
" </svg>\n",
|
143 |
+
" </button>\n",
|
144 |
+
"\n",
|
145 |
+
" <style>\n",
|
146 |
+
" .colab-df-container {\n",
|
147 |
+
" display:flex;\n",
|
148 |
+
" gap: 12px;\n",
|
149 |
+
" }\n",
|
150 |
+
"\n",
|
151 |
+
" .colab-df-convert {\n",
|
152 |
+
" background-color: #E8F0FE;\n",
|
153 |
+
" border: none;\n",
|
154 |
+
" border-radius: 50%;\n",
|
155 |
+
" cursor: pointer;\n",
|
156 |
+
" display: none;\n",
|
157 |
+
" fill: #1967D2;\n",
|
158 |
+
" height: 32px;\n",
|
159 |
+
" padding: 0 0 0 0;\n",
|
160 |
+
" width: 32px;\n",
|
161 |
+
" }\n",
|
162 |
+
"\n",
|
163 |
+
" .colab-df-convert:hover {\n",
|
164 |
+
" background-color: #E2EBFA;\n",
|
165 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
166 |
+
" fill: #174EA6;\n",
|
167 |
+
" }\n",
|
168 |
+
"\n",
|
169 |
+
" .colab-df-buttons div {\n",
|
170 |
+
" margin-bottom: 4px;\n",
|
171 |
+
" }\n",
|
172 |
+
"\n",
|
173 |
+
" [theme=dark] .colab-df-convert {\n",
|
174 |
+
" background-color: #3B4455;\n",
|
175 |
+
" fill: #D2E3FC;\n",
|
176 |
+
" }\n",
|
177 |
+
"\n",
|
178 |
+
" [theme=dark] .colab-df-convert:hover {\n",
|
179 |
+
" background-color: #434B5C;\n",
|
180 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
181 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
182 |
+
" fill: #FFFFFF;\n",
|
183 |
+
" }\n",
|
184 |
+
" </style>\n",
|
185 |
+
"\n",
|
186 |
+
" <script>\n",
|
187 |
+
" const buttonEl =\n",
|
188 |
+
" document.querySelector('#df-3f4ad131-d55b-46a5-8dff-6fa3e12c15b0 button.colab-df-convert');\n",
|
189 |
+
" buttonEl.style.display =\n",
|
190 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
191 |
+
"\n",
|
192 |
+
" async function convertToInteractive(key) {\n",
|
193 |
+
" const element = document.querySelector('#df-3f4ad131-d55b-46a5-8dff-6fa3e12c15b0');\n",
|
194 |
+
" const dataTable =\n",
|
195 |
+
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
196 |
+
" [key], {});\n",
|
197 |
+
" if (!dataTable) return;\n",
|
198 |
+
"\n",
|
199 |
+
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
200 |
+
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
201 |
+
" + ' to learn more about interactive tables.';\n",
|
202 |
+
" element.innerHTML = '';\n",
|
203 |
+
" dataTable['output_type'] = 'display_data';\n",
|
204 |
+
" await google.colab.output.renderOutput(dataTable, element);\n",
|
205 |
+
" const docLink = document.createElement('div');\n",
|
206 |
+
" docLink.innerHTML = docLinkHtml;\n",
|
207 |
+
" element.appendChild(docLink);\n",
|
208 |
+
" }\n",
|
209 |
+
" </script>\n",
|
210 |
+
" </div>\n",
|
211 |
+
"\n",
|
212 |
+
"\n",
|
213 |
+
"<div id=\"df-518b8ddb-11a0-49a2-8903-71e4063ca189\">\n",
|
214 |
+
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-518b8ddb-11a0-49a2-8903-71e4063ca189')\"\n",
|
215 |
+
" title=\"Suggest charts\"\n",
|
216 |
+
" style=\"display:none;\">\n",
|
217 |
+
"\n",
|
218 |
+
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
219 |
+
" width=\"24px\">\n",
|
220 |
+
" <g>\n",
|
221 |
+
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
|
222 |
+
" </g>\n",
|
223 |
+
"</svg>\n",
|
224 |
+
" </button>\n",
|
225 |
+
"\n",
|
226 |
+
"<style>\n",
|
227 |
+
" .colab-df-quickchart {\n",
|
228 |
+
" --bg-color: #E8F0FE;\n",
|
229 |
+
" --fill-color: #1967D2;\n",
|
230 |
+
" --hover-bg-color: #E2EBFA;\n",
|
231 |
+
" --hover-fill-color: #174EA6;\n",
|
232 |
+
" --disabled-fill-color: #AAA;\n",
|
233 |
+
" --disabled-bg-color: #DDD;\n",
|
234 |
+
" }\n",
|
235 |
+
"\n",
|
236 |
+
" [theme=dark] .colab-df-quickchart {\n",
|
237 |
+
" --bg-color: #3B4455;\n",
|
238 |
+
" --fill-color: #D2E3FC;\n",
|
239 |
+
" --hover-bg-color: #434B5C;\n",
|
240 |
+
" --hover-fill-color: #FFFFFF;\n",
|
241 |
+
" --disabled-bg-color: #3B4455;\n",
|
242 |
+
" --disabled-fill-color: #666;\n",
|
243 |
+
" }\n",
|
244 |
+
"\n",
|
245 |
+
" .colab-df-quickchart {\n",
|
246 |
+
" background-color: var(--bg-color);\n",
|
247 |
+
" border: none;\n",
|
248 |
+
" border-radius: 50%;\n",
|
249 |
+
" cursor: pointer;\n",
|
250 |
+
" display: none;\n",
|
251 |
+
" fill: var(--fill-color);\n",
|
252 |
+
" height: 32px;\n",
|
253 |
+
" padding: 0;\n",
|
254 |
+
" width: 32px;\n",
|
255 |
+
" }\n",
|
256 |
+
"\n",
|
257 |
+
" .colab-df-quickchart:hover {\n",
|
258 |
+
" background-color: var(--hover-bg-color);\n",
|
259 |
+
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
260 |
+
" fill: var(--button-hover-fill-color);\n",
|
261 |
+
" }\n",
|
262 |
+
"\n",
|
263 |
+
" .colab-df-quickchart-complete:disabled,\n",
|
264 |
+
" .colab-df-quickchart-complete:disabled:hover {\n",
|
265 |
+
" background-color: var(--disabled-bg-color);\n",
|
266 |
+
" fill: var(--disabled-fill-color);\n",
|
267 |
+
" box-shadow: none;\n",
|
268 |
+
" }\n",
|
269 |
+
"\n",
|
270 |
+
" .colab-df-spinner {\n",
|
271 |
+
" border: 2px solid var(--fill-color);\n",
|
272 |
+
" border-color: transparent;\n",
|
273 |
+
" border-bottom-color: var(--fill-color);\n",
|
274 |
+
" animation:\n",
|
275 |
+
" spin 1s steps(1) infinite;\n",
|
276 |
+
" }\n",
|
277 |
+
"\n",
|
278 |
+
" @keyframes spin {\n",
|
279 |
+
" 0% {\n",
|
280 |
+
" border-color: transparent;\n",
|
281 |
+
" border-bottom-color: var(--fill-color);\n",
|
282 |
+
" border-left-color: var(--fill-color);\n",
|
283 |
+
" }\n",
|
284 |
+
" 20% {\n",
|
285 |
+
" border-color: transparent;\n",
|
286 |
+
" border-left-color: var(--fill-color);\n",
|
287 |
+
" border-top-color: var(--fill-color);\n",
|
288 |
+
" }\n",
|
289 |
+
" 30% {\n",
|
290 |
+
" border-color: transparent;\n",
|
291 |
+
" border-left-color: var(--fill-color);\n",
|
292 |
+
" border-top-color: var(--fill-color);\n",
|
293 |
+
" border-right-color: var(--fill-color);\n",
|
294 |
+
" }\n",
|
295 |
+
" 40% {\n",
|
296 |
+
" border-color: transparent;\n",
|
297 |
+
" border-right-color: var(--fill-color);\n",
|
298 |
+
" border-top-color: var(--fill-color);\n",
|
299 |
+
" }\n",
|
300 |
+
" 60% {\n",
|
301 |
+
" border-color: transparent;\n",
|
302 |
+
" border-right-color: var(--fill-color);\n",
|
303 |
+
" }\n",
|
304 |
+
" 80% {\n",
|
305 |
+
" border-color: transparent;\n",
|
306 |
+
" border-right-color: var(--fill-color);\n",
|
307 |
+
" border-bottom-color: var(--fill-color);\n",
|
308 |
+
" }\n",
|
309 |
+
" 90% {\n",
|
310 |
+
" border-color: transparent;\n",
|
311 |
+
" border-bottom-color: var(--fill-color);\n",
|
312 |
+
" }\n",
|
313 |
+
" }\n",
|
314 |
+
"</style>\n",
|
315 |
+
"\n",
|
316 |
+
" <script>\n",
|
317 |
+
" async function quickchart(key) {\n",
|
318 |
+
" const quickchartButtonEl =\n",
|
319 |
+
" document.querySelector('#' + key + ' button');\n",
|
320 |
+
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
|
321 |
+
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
|
322 |
+
" try {\n",
|
323 |
+
" const charts = await google.colab.kernel.invokeFunction(\n",
|
324 |
+
" 'suggestCharts', [key], {});\n",
|
325 |
+
" } catch (error) {\n",
|
326 |
+
" console.error('Error during call to suggestCharts:', error);\n",
|
327 |
+
" }\n",
|
328 |
+
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
|
329 |
+
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
|
330 |
+
" }\n",
|
331 |
+
" (() => {\n",
|
332 |
+
" let quickchartButtonEl =\n",
|
333 |
+
" document.querySelector('#df-518b8ddb-11a0-49a2-8903-71e4063ca189 button');\n",
|
334 |
+
" quickchartButtonEl.style.display =\n",
|
335 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
336 |
+
" })();\n",
|
337 |
+
" </script>\n",
|
338 |
+
"</div>\n",
|
339 |
+
"\n",
|
340 |
+
" <div id=\"id_5f410c26-0cce-4d03-86e0-353ac70a1d74\">\n",
|
341 |
+
" <style>\n",
|
342 |
+
" .colab-df-generate {\n",
|
343 |
+
" background-color: #E8F0FE;\n",
|
344 |
+
" border: none;\n",
|
345 |
+
" border-radius: 50%;\n",
|
346 |
+
" cursor: pointer;\n",
|
347 |
+
" display: none;\n",
|
348 |
+
" fill: #1967D2;\n",
|
349 |
+
" height: 32px;\n",
|
350 |
+
" padding: 0 0 0 0;\n",
|
351 |
+
" width: 32px;\n",
|
352 |
+
" }\n",
|
353 |
+
"\n",
|
354 |
+
" .colab-df-generate:hover {\n",
|
355 |
+
" background-color: #E2EBFA;\n",
|
356 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
357 |
+
" fill: #174EA6;\n",
|
358 |
+
" }\n",
|
359 |
+
"\n",
|
360 |
+
" [theme=dark] .colab-df-generate {\n",
|
361 |
+
" background-color: #3B4455;\n",
|
362 |
+
" fill: #D2E3FC;\n",
|
363 |
+
" }\n",
|
364 |
+
"\n",
|
365 |
+
" [theme=dark] .colab-df-generate:hover {\n",
|
366 |
+
" background-color: #434B5C;\n",
|
367 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
368 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
369 |
+
" fill: #FFFFFF;\n",
|
370 |
+
" }\n",
|
371 |
+
" </style>\n",
|
372 |
+
" <button class=\"colab-df-generate\" onclick=\"generateWithVariable('clean_df')\"\n",
|
373 |
+
" title=\"Generate code using this dataframe.\"\n",
|
374 |
+
" style=\"display:none;\">\n",
|
375 |
+
"\n",
|
376 |
+
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
377 |
+
" width=\"24px\">\n",
|
378 |
+
" <path d=\"M7,19H8.4L18.45,9,17,7.55,7,17.6ZM5,21V16.75L18.45,3.32a2,2,0,0,1,2.83,0l1.4,1.43a1.91,1.91,0,0,1,.58,1.4,1.91,1.91,0,0,1-.58,1.4L9.25,21ZM18.45,9,17,7.55Zm-12,3A5.31,5.31,0,0,0,4.9,8.1,5.31,5.31,0,0,0,1,6.5,5.31,5.31,0,0,0,4.9,4.9,5.31,5.31,0,0,0,6.5,1,5.31,5.31,0,0,0,8.1,4.9,5.31,5.31,0,0,0,12,6.5,5.46,5.46,0,0,0,6.5,12Z\"/>\n",
|
379 |
+
" </svg>\n",
|
380 |
+
" </button>\n",
|
381 |
+
" <script>\n",
|
382 |
+
" (() => {\n",
|
383 |
+
" const buttonEl =\n",
|
384 |
+
" document.querySelector('#id_5f410c26-0cce-4d03-86e0-353ac70a1d74 button.colab-df-generate');\n",
|
385 |
+
" buttonEl.style.display =\n",
|
386 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
387 |
+
"\n",
|
388 |
+
" buttonEl.onclick = () => {\n",
|
389 |
+
" google.colab.notebook.generateWithVariable('clean_df');\n",
|
390 |
+
" }\n",
|
391 |
+
" })();\n",
|
392 |
+
" </script>\n",
|
393 |
+
" </div>\n",
|
394 |
+
"\n",
|
395 |
+
" </div>\n",
|
396 |
+
" </div>\n"
|
397 |
+
],
|
398 |
+
"text/plain": [
|
399 |
+
" Name \\\n",
|
400 |
+
"0 ISB-020-U3-W-D-01-B07005-001-000 \n",
|
401 |
+
"1 ISB-020-U3-W-D-01-B07005-002-000 \n",
|
402 |
+
"2 ISB-020-U3-W-D-01-B07005-003-000 \n",
|
403 |
+
"3 ISB-020-U3-W-D-01-B07005-004-000 \n",
|
404 |
+
"4 ISB-020-U3-W-D-01-B18012-001-000 \n",
|
405 |
+
".. ... \n",
|
406 |
+
"153 ISB-020-U3-W-S-01-B17012-008-000 \n",
|
407 |
+
"159 ISB-020-U3-W-S-01-B17012-010-000 \n",
|
408 |
+
"160 ISB-020-U3-W-S-01-B17012-011-000 \n",
|
409 |
+
"161 ISB-020-U3-W-S-01-B18003-001-020 \n",
|
410 |
+
"162 ISB-020-U3-W-S-01-B19009-001-020 \n",
|
411 |
+
"\n",
|
412 |
+
" Beschreibung Disziplin \n",
|
413 |
+
"0 Bauarten und Stuecknachweis SGK D - Datennetz \n",
|
414 |
+
"1 Bauarten und Stuecknachweis SGK D - Datennetz \n",
|
415 |
+
"2 Pruefprotokoll nach DIN EN 61439-1/3 D - Datennetz \n",
|
416 |
+
"3 Pruefprotokoll nach DIN EN 61439-1/3 D - Datennetz \n",
|
417 |
+
"4 Sicherungslegende G-020 U3 779-AS 1 D - Datennetz \n",
|
418 |
+
".. ... ... \n",
|
419 |
+
"153 Foto S - Sanitaer \n",
|
420 |
+
"159 Foto S - Sanitaer \n",
|
421 |
+
"160 Foto S - Sanitaer \n",
|
422 |
+
"161 Schieber / Hawle / Schieber 4000 + Handrad 780... S - Sanitaer \n",
|
423 |
+
"162 Schieber / Hawle / 4000 Schutzraum S - Sanitaer \n",
|
424 |
+
"\n",
|
425 |
+
"[158 rows x 3 columns]"
|
426 |
+
]
|
427 |
+
},
|
428 |
+
"execution_count": 118,
|
429 |
+
"metadata": {},
|
430 |
+
"output_type": "execute_result"
|
431 |
+
}
|
432 |
+
],
|
433 |
+
"source": [
|
434 |
+
"# drop all columns except name, description, discipline\n",
|
435 |
+
"features = ['Name', 'Beschreibung', 'Disziplin']\n",
|
436 |
+
"# Remove rows with NaN values\n",
|
437 |
+
"clean_df = df[features].dropna()\n",
|
438 |
+
"clean_df"
|
439 |
+
]
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"cell_type": "code",
|
443 |
+
"execution_count": 143,
|
444 |
+
"metadata": {
|
445 |
+
"id": "_PtvbAskQa72"
|
446 |
+
},
|
447 |
+
"outputs": [],
|
448 |
+
"source": [
|
449 |
+
"clean_df.to_csv('name-description-discipline-data.csv')"
|
450 |
+
]
|
451 |
+
}
|
452 |
+
],
|
453 |
+
"metadata": {
|
454 |
+
"colab": {
|
455 |
+
"provenance": []
|
456 |
+
},
|
457 |
+
"kernelspec": {
|
458 |
+
"display_name": "Python 3",
|
459 |
+
"name": "python3"
|
460 |
+
},
|
461 |
+
"language_info": {
|
462 |
+
"name": "python"
|
463 |
+
}
|
464 |
+
},
|
465 |
+
"nbformat": 4,
|
466 |
+
"nbformat_minor": 0
|
467 |
+
}
|
notebooks/vectarize.ipynb
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"data": {
|
10 |
+
"text/plain": [
|
11 |
+
"True"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
"execution_count": 1,
|
15 |
+
"metadata": {},
|
16 |
+
"output_type": "execute_result"
|
17 |
+
}
|
18 |
+
],
|
19 |
+
"source": [
|
20 |
+
"import os \n",
|
21 |
+
"from dotenv import load_dotenv\n",
|
22 |
+
"\n",
|
23 |
+
"from langchain_community.document_loaders.csv_loader import CSVLoader\n",
|
24 |
+
"\n",
|
25 |
+
"from langchain_community.vectorstores import Vectara\n",
|
26 |
+
"load_dotenv()"
|
27 |
+
]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"cell_type": "code",
|
31 |
+
"execution_count": 2,
|
32 |
+
"metadata": {},
|
33 |
+
"outputs": [],
|
34 |
+
"source": [
|
35 |
+
"loader = CSVLoader(file_path='/home/salgadev/code/DocVerifyRAG/name-description-discipline-data.csv')\n",
|
36 |
+
"data = loader.load()\n",
|
37 |
+
"\n",
|
38 |
+
"vectara_customer_id = os.environ['VECTARA_CUSTOMER_ID']\n",
|
39 |
+
"vectara_corpus_id = os.environ['VECTARA_CORPUS_ID']\n",
|
40 |
+
"vectara_api_key = os.environ['VECTARA_API_KEY']\n",
|
41 |
+
"#hf_token = os.environ['HF_API_TOKEN']\n",
|
42 |
+
"\n",
|
43 |
+
"vectorstore = Vectara(vectara_customer_id=vectara_customer_id,\n",
|
44 |
+
" vectara_corpus_id=vectara_corpus_id,\n",
|
45 |
+
" vectara_api_key=vectara_api_key)"
|
46 |
+
]
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"cell_type": "code",
|
50 |
+
"execution_count": 3,
|
51 |
+
"metadata": {},
|
52 |
+
"outputs": [],
|
53 |
+
"source": [
|
54 |
+
"from langchain_community.embeddings import HuggingFaceEmbeddings\n",
|
55 |
+
"embeddings = HuggingFaceEmbeddings(model_name=\"intfloat/multilingual-e5-large\")"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "code",
|
60 |
+
"execution_count": 4,
|
61 |
+
"metadata": {},
|
62 |
+
"outputs": [],
|
63 |
+
"source": [
|
64 |
+
"vectara = Vectara.from_documents(data, embedding=embeddings)"
|
65 |
+
]
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"cell_type": "code",
|
69 |
+
"execution_count": 5,
|
70 |
+
"metadata": {},
|
71 |
+
"outputs": [],
|
72 |
+
"source": [
|
73 |
+
"from langchain.chains.qa_with_sources import load_qa_with_sources_chain\n",
|
74 |
+
"\n"
|
75 |
+
]
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"cell_type": "code",
|
79 |
+
"execution_count": 7,
|
80 |
+
"metadata": {},
|
81 |
+
"outputs": [],
|
82 |
+
"source": [
|
83 |
+
"summary_config = {\"is_enabled\": True, \"max_results\": 5, \"response_lang\": \"eng\"}\n",
|
84 |
+
"retriever = vectara.as_retriever(\n",
|
85 |
+
" search_kwargs={\"k\": 3, \"summary_config\": summary_config}\n",
|
86 |
+
")"
|
87 |
+
]
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"cell_type": "code",
|
91 |
+
"execution_count": 8,
|
92 |
+
"metadata": {},
|
93 |
+
"outputs": [],
|
94 |
+
"source": [
|
95 |
+
"def get_sources(documents):\n",
|
96 |
+
" return documents[:-1]\n",
|
97 |
+
"\n",
|
98 |
+
"\n",
|
99 |
+
"def get_summary(documents):\n",
|
100 |
+
" return documents[-1].page_content"
|
101 |
+
]
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"cell_type": "code",
|
105 |
+
"execution_count": 9,
|
106 |
+
"metadata": {},
|
107 |
+
"outputs": [
|
108 |
+
{
|
109 |
+
"data": {
|
110 |
+
"text/plain": [
|
111 |
+
"'The documents related to the electrical discipline include items like ISB-020-U3-W-E-01-B07005-002-020, which pertains to U3 740KV 2 USV, and ISB-020-U3-W-E-01-B07005-002-040 for U3 780KV 4 equipment. These documents are part of the E - Elektroanlagen discipline, focusing on electrical systems and installations [7][11]. Additionally, there are documents specifying different aspects such as AS 1_G010, AS 2_G011, and AS 1_G009, highlighting specific details within the electrical discipline documentation [7][11]. These documents are crucial for ensuring proper electrical planning, design, and implementation within various systems and structures.'"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
"execution_count": 9,
|
115 |
+
"metadata": {},
|
116 |
+
"output_type": "execute_result"
|
117 |
+
}
|
118 |
+
],
|
119 |
+
"source": [
|
120 |
+
"query_str = \"Describe document related to the electrical discipline\"\n",
|
121 |
+
"\n",
|
122 |
+
"(retriever | get_summary).invoke(query_str)"
|
123 |
+
]
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"cell_type": "code",
|
127 |
+
"execution_count": 10,
|
128 |
+
"metadata": {},
|
129 |
+
"outputs": [
|
130 |
+
{
|
131 |
+
"data": {
|
132 |
+
"text/plain": [
|
133 |
+
"[Document(page_content=': 12\\nName: ISB-020-U3-W-E-01-B07005-002-020\\nBeschreibung: E_020 U3 740_KV 2_USV\\nDisziplin: E - Elektroanlagen : 13\\nName: ISB-020-U3-W-E-01-B07005-002-040\\nBeschreibung: E_020 U3 780_KV 4\\nDisziplin: E - Elektroanlagen : 14\\nName: ISB-020-U3-W-E-01-B07005-003-010\\nBeschreibung: G_020 U3 711_AS 2_G011\\nDisziplin: E - Elektroanlagen : 15\\nName: ISB-020-U3-W-E-01-B15100-035-000\\nBeschreibung: Luftmengen Protokoll\\nDisziplin: L - Lueftung : 16\\nName: ISB-020-U3-W-E-01-B15100-036-000\\nBeschreibung: Luftmengen Protokoll\\nDisziplin: L - Lueftung', metadata={'source': 'langchain', 'row': '14', 'lang': 'deu', 'offset': '0', 'len': '110'}),\n",
|
134 |
+
" Document(page_content=': 7\\nName: ISB-020-U3-W-E-01-B07005-001-010\\nBeschreibung: E_020 U3 780_KV 4_E031 E_Ladestationen\\nDisziplin: E - Elektroanlagen : 8\\nName: ISB-020-U3-W-E-01-B07005-001-020\\nBeschreibung: E_020 U3 740_KV 2\\nDisziplin: E - Elektroanlagen : 9\\nName: ISB-020-U3-W-E-01-B07005-001-040\\nBeschreibung: G_020 U3 779_AS 1_G009\\nDisziplin: E - Elektroanlagen : 10\\nName: ISB-020-U3-W-E-01-B07005-001-999\\nBeschreibung: 772 UV 1 G022 / WW 218057\\nDisziplin: E - Elektroanlagen : 11\\nName: ISB-020-U3-W-E-01-B07005-002-010\\nBeschreibung: G_020 U3 711_AS 1_G010\\nDisziplin: E - Elektroanlagen', metadata={'source': 'langchain', 'row': '9', 'lang': 'deu', 'offset': '0', 'len': '109'}),\n",
|
135 |
+
" Document(page_content=': 11\\nName: ISB-020-U3-W-E-01-B07005-002-010\\nBeschreibung: G_020 U3 711_AS 1_G010\\nDisziplin: E - Elektroanlagen : 12\\nName: ISB-020-U3-W-E-01-B07005-002-020\\nBeschreibung: E_020 U3 740_KV 2_USV\\nDisziplin: E - Elektroanlagen : 13\\nName: ISB-020-U3-W-E-01-B07005-002-040\\nBeschreibung: E_020 U3 780_KV 4\\nDisziplin: E - Elektroanlagen : 14\\nName: ISB-020-U3-W-E-01-B07005-003-010\\nBeschreibung: G_020 U3 711_AS 2_G011\\nDisziplin: E - Elektroanlagen : 15\\nName: ISB-020-U3-W-E-01-B15100-035-000\\nBeschreibung: Luftmengen Protokoll\\nDisziplin: L - Lueftung', metadata={'source': 'langchain', 'row': '13', 'lang': 'deu', 'offset': '0', 'len': '105'})]"
|
136 |
+
]
|
137 |
+
},
|
138 |
+
"execution_count": 10,
|
139 |
+
"metadata": {},
|
140 |
+
"output_type": "execute_result"
|
141 |
+
}
|
142 |
+
],
|
143 |
+
"source": [
|
144 |
+
"(retriever | get_sources).invoke(query_str)\n",
|
145 |
+
"\n"
|
146 |
+
]
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"cell_type": "code",
|
150 |
+
"execution_count": 11,
|
151 |
+
"metadata": {},
|
152 |
+
"outputs": [],
|
153 |
+
"source": [
|
154 |
+
"madeup_metadata = {'filename': 'school_plumbing.txt', 'description': 'This document describes the plumbing system for a typical school building, including potable water supply, fixtures and appliances, drainage waste and vent (DWV) systems, and stormwater management.', 'discipline': 'plumbing'}"
|
155 |
+
]
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"cell_type": "code",
|
159 |
+
"execution_count": 12,
|
160 |
+
"metadata": {},
|
161 |
+
"outputs": [],
|
162 |
+
"source": [
|
163 |
+
"prompt_template = \"\"\"Compare the following metadata and return a confidence interval measuring how much the metadata is similar to your available information \n",
|
164 |
+
"\"\"\""
|
165 |
+
]
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"cell_type": "code",
|
169 |
+
"execution_count": 13,
|
170 |
+
"metadata": {},
|
171 |
+
"outputs": [
|
172 |
+
{
|
173 |
+
"data": {
|
174 |
+
"text/plain": [
|
175 |
+
"'The returned results did not contain sufficient information to be summarized into a useful answer for your query. Please try a different search or restate your query differently.'"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
"execution_count": 13,
|
179 |
+
"metadata": {},
|
180 |
+
"output_type": "execute_result"
|
181 |
+
}
|
182 |
+
],
|
183 |
+
"source": [
|
184 |
+
"query_str = f'{prompt_template}\\nmetadata:{madeup_metadata}'\n",
|
185 |
+
"(retriever | get_summary).invoke(query_str)"
|
186 |
+
]
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"cell_type": "code",
|
190 |
+
"execution_count": 15,
|
191 |
+
"metadata": {},
|
192 |
+
"outputs": [],
|
193 |
+
"source": [
|
194 |
+
"query_str = 'What discipline does this description belong to? Description: This document provides instructions for handling, assembly, maintenance, and troubleshooting of Hawle Flanschen-Schieber, primarily used in water supply systems with a maximum operating pressure of 25 bar and temperature of 40°C.'\n"
|
195 |
+
]
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"cell_type": "code",
|
199 |
+
"execution_count": 16,
|
200 |
+
"metadata": {},
|
201 |
+
"outputs": [
|
202 |
+
{
|
203 |
+
"data": {
|
204 |
+
"text/plain": [
|
205 |
+
"'The description provided pertains to the discipline of Sanitaer (Sanitary), as indicated by search results [159] and [160]. These instructions are related to handling, assembly, maintenance, and troubleshooting of Hawle Flanschen-Schieber, commonly utilized in water supply systems with a maximum operating pressure of 25 bar and temperature of 40°C. The document likely focuses on the proper procedures for managing and servicing these components within sanitary systems.'"
|
206 |
+
]
|
207 |
+
},
|
208 |
+
"execution_count": 16,
|
209 |
+
"metadata": {},
|
210 |
+
"output_type": "execute_result"
|
211 |
+
}
|
212 |
+
],
|
213 |
+
"source": [
|
214 |
+
"(retriever | get_summary).invoke(query_str)"
|
215 |
+
]
|
216 |
+
}
|
217 |
+
],
|
218 |
+
"metadata": {
|
219 |
+
"kernelspec": {
|
220 |
+
"display_name": "Python 3",
|
221 |
+
"language": "python",
|
222 |
+
"name": "python3"
|
223 |
+
},
|
224 |
+
"language_info": {
|
225 |
+
"codemirror_mode": {
|
226 |
+
"name": "ipython",
|
227 |
+
"version": 3
|
228 |
+
},
|
229 |
+
"file_extension": ".py",
|
230 |
+
"mimetype": "text/x-python",
|
231 |
+
"name": "python",
|
232 |
+
"nbconvert_exporter": "python",
|
233 |
+
"pygments_lexer": "ipython3",
|
234 |
+
"version": "3.11.8"
|
235 |
+
}
|
236 |
+
},
|
237 |
+
"nbformat": 4,
|
238 |
+
"nbformat_minor": 2
|
239 |
+
}
|