Spaces:
Sleeping
Sleeping
Elia Wäfler
commited on
Commit
•
2c73bfa
1
Parent(s):
951e0ac
renamed frontend to app.py
Browse files
app.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from PyPDF2 import PdfReader
|
4 |
+
from langchain import embeddings
|
5 |
+
from langchain.text_splitter import CharacterTextSplitter
|
6 |
+
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
|
7 |
+
from langchain.vectorstores import FAISS
|
8 |
+
from langchain.vectorstores import faiss
|
9 |
+
from langchain.chat_models import ChatOpenAI
|
10 |
+
from langchain.memory import ConversationBufferMemory
|
11 |
+
from langchain.chains import ConversationalRetrievalChain
|
12 |
+
from html_templates import css, bot_template, user_template
|
13 |
+
from langchain.llms import HuggingFaceHub
|
14 |
+
import os
|
15 |
+
import pickle
|
16 |
+
from datetime import datetime
|
17 |
+
|
18 |
+
|
19 |
+
def get_pdf_text(pdf_docs):
|
20 |
+
text = ""
|
21 |
+
for pdf in pdf_docs:
|
22 |
+
pdf_reader = PdfReader(pdf)
|
23 |
+
for page in pdf_reader.pages:
|
24 |
+
text += page.extract_text()
|
25 |
+
return text
|
26 |
+
|
27 |
+
|
28 |
+
def get_text_chunks(text):
|
29 |
+
text_splitter = CharacterTextSplitter(
|
30 |
+
separator="\n",
|
31 |
+
chunk_size=1000,
|
32 |
+
chunk_overlap=200,
|
33 |
+
length_function=len
|
34 |
+
)
|
35 |
+
chunks = text_splitter.split_text(text)
|
36 |
+
return chunks
|
37 |
+
|
38 |
+
|
39 |
+
def get_vectorstore(text_chunks):
|
40 |
+
embeddings = OpenAIEmbeddings()
|
41 |
+
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
|
42 |
+
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
43 |
+
return vectorstore
|
44 |
+
|
45 |
+
|
46 |
+
def get_conversation_chain(vectorstore):
|
47 |
+
llm = ChatOpenAI()
|
48 |
+
# llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
|
49 |
+
|
50 |
+
memory = ConversationBufferMemory(
|
51 |
+
memory_key='chat_history', return_messages=True)
|
52 |
+
conversation_chain = ConversationalRetrievalChain.from_llm(
|
53 |
+
llm=llm,
|
54 |
+
retriever=vectorstore.as_retriever(),
|
55 |
+
memory=memory
|
56 |
+
)
|
57 |
+
return conversation_chain
|
58 |
+
|
59 |
+
|
60 |
+
def handle_userinput(user_question):
|
61 |
+
response = st.session_state.conversation({'question': user_question})
|
62 |
+
st.session_state.chat_history = response['chat_history']
|
63 |
+
|
64 |
+
for i, message in enumerate(st.session_state.chat_history):
|
65 |
+
# Display user message
|
66 |
+
if i % 2 == 0:
|
67 |
+
st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
|
68 |
+
else:
|
69 |
+
print(message)
|
70 |
+
# Display AI response
|
71 |
+
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
|
72 |
+
# Display source document information if available in the message
|
73 |
+
if hasattr(message, 'source') and message.source:
|
74 |
+
st.write(f"Source Document: {message.source}", unsafe_allow_html=True)
|
75 |
+
|
76 |
+
|
77 |
+
def safe_vec_store():
|
78 |
+
os.makedirs('vectorstore', exist_ok=True)
|
79 |
+
filename = 'vectores' + datetime.now().strftime('%Y%m%d%H%M') + '.pkl'
|
80 |
+
file_path = os.path.join('vectorstore', filename)
|
81 |
+
vector_store = st.session_state.vectorstore
|
82 |
+
|
83 |
+
# Serialize and save the entire FAISS object using pickle
|
84 |
+
with open(file_path, 'wb') as f:
|
85 |
+
pickle.dump(vector_store, f)
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
def main():
|
90 |
+
load_dotenv()
|
91 |
+
st.set_page_config(page_title="Doc Verify RAG", page_icon=":hospital:")
|
92 |
+
st.write(css, unsafe_allow_html=True)
|
93 |
+
|
94 |
+
st.subheader("Your documents")
|
95 |
+
pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
|
96 |
+
filenames = [file.name for file in pdf_docs if file is not None]
|
97 |
+
|
98 |
+
if st.button("Process"):
|
99 |
+
with st.spinner("Processing"):
|
100 |
+
loaded_vec_store = None
|
101 |
+
for filename in filenames:
|
102 |
+
if ".pkl" in filename:
|
103 |
+
file_path = os.path.join('vectorstore', filename)
|
104 |
+
with open(file_path, 'rb') as f:
|
105 |
+
loaded_vec_store = pickle.load(f)
|
106 |
+
raw_text = get_pdf_text(pdf_docs)
|
107 |
+
text_chunks = get_text_chunks(raw_text)
|
108 |
+
vec = get_vectorstore(text_chunks)
|
109 |
+
if loaded_vec_store:
|
110 |
+
vec.merge_from(loaded_vec_store)
|
111 |
+
st.warning("loaded vectorstore")
|
112 |
+
if "vectorstore" in st.session_state:
|
113 |
+
vec.merge_from(st.session_state.vectorstore)
|
114 |
+
st.warning("merged to existing")
|
115 |
+
st.session_state.vectorstore = vec
|
116 |
+
st.session_state.conversation = get_conversation_chain(vec)
|
117 |
+
st.success("data loaded")
|
118 |
+
|
119 |
+
if "conversation" not in st.session_state:
|
120 |
+
st.session_state.conversation = None
|
121 |
+
if "chat_history" not in st.session_state:
|
122 |
+
st.session_state.chat_history = None
|
123 |
+
|
124 |
+
st.header("Doc Verify RAG :hospital:")
|
125 |
+
user_question = st.text_input("Ask a question about your documents:")
|
126 |
+
if user_question:
|
127 |
+
handle_userinput(user_question)
|
128 |
+
|
129 |
+
with st.sidebar:
|
130 |
+
|
131 |
+
st.subheader("Classification Instrucitons")
|
132 |
+
classifier_docs = st.file_uploader("Upload your instructions here and click on 'Process'", accept_multiple_files=True)
|
133 |
+
filenames = [file.name for file in classifier_docs if file is not None]
|
134 |
+
|
135 |
+
if st.button("Process Classification"):
|
136 |
+
with st.spinner("Processing"):
|
137 |
+
loaded_vec_store = None
|
138 |
+
for filename in filenames:
|
139 |
+
if ".pkl" in filename:
|
140 |
+
file_path = os.path.join('vectorstore', filename)
|
141 |
+
with open(file_path, 'rb') as f:
|
142 |
+
loaded_vec_store = pickle.load(f)
|
143 |
+
raw_text = get_pdf_text(pdf_docs)
|
144 |
+
text_chunks = get_text_chunks(raw_text)
|
145 |
+
vec = get_vectorstore(text_chunks)
|
146 |
+
if loaded_vec_store:
|
147 |
+
vec.merge_from(loaded_vec_store)
|
148 |
+
st.warning("loaded vectorstore")
|
149 |
+
if "vectorstore" in st.session_state:
|
150 |
+
vec.merge_from(st.session_state.vectorstore)
|
151 |
+
st.warning("merged to existing")
|
152 |
+
st.session_state.vectorstore = vec
|
153 |
+
st.session_state.conversation = get_conversation_chain(vec)
|
154 |
+
st.success("data loaded")
|
155 |
+
|
156 |
+
# Save and Load Embeddings
|
157 |
+
if st.button("Save Embeddings"):
|
158 |
+
if "vectorstore" in st.session_state:
|
159 |
+
safe_vec_store()
|
160 |
+
# st.session_state.vectorstore.save_local("faiss_index")
|
161 |
+
st.sidebar.success("safed")
|
162 |
+
else:
|
163 |
+
st.sidebar.warning("No embeddings to save. Please process documents first.")
|
164 |
+
|
165 |
+
if st.button("Load Embeddings"):
|
166 |
+
st.warning("this function is not in use, just upload the vectorstore")
|
167 |
+
|
168 |
+
|
169 |
+
if __name__ == '__main__':
|
170 |
+
main()
|