Carlos Salgado commited on
Commit
561ac7c
·
1 Parent(s): 80d18e0

call username variable in workflow, display model name

Browse files
Files changed (3) hide show
  1. .github/workflows/hugging_face.yml +3 -4
  2. app.py +4 -3
  3. scripts.py +2 -1
.github/workflows/hugging_face.yml CHANGED
@@ -12,11 +12,10 @@ jobs:
12
  - uses: actions/checkout@v3
13
  with:
14
  fetch-depth: 0
15
- lfs: true
16
- - name: Navigate to frontend directory
17
- run: cd ./frontend
18
  - name: Push to hub
19
  env:
20
  HF_TOKEN: ${{ secrets.HF_TOKEN }}
21
- run: git push https://salgadev:$HF_TOKEN@huggingface.co/spaces/salgadev/docverifyrag main
 
22
 
 
12
  - uses: actions/checkout@v3
13
  with:
14
  fetch-depth: 0
15
+ lfs: true
 
 
16
  - name: Push to hub
17
  env:
18
  HF_TOKEN: ${{ secrets.HF_TOKEN }}
19
+ HF_USER: ${{ variables.HF_USER }}
20
+ run: git push https://$HF_USER:$HF_TOKEN@huggingface.co/spaces/$HF_USER/docverifyrag main
21
 
app.py CHANGED
@@ -1,9 +1,9 @@
1
- import streamlit as st
2
  import io
3
  import os
 
4
  import tempfile
5
 
6
- from scripts import generate_metadata, ingest
7
 
8
 
9
  st.title('DocVerifyRAG')
@@ -19,8 +19,9 @@ if uploaded_file is not None:
19
  st.write(f'Created temporary file {file_path}')
20
 
21
  docs = ingest(file_path)
 
22
  metadata = generate_metadata(docs)
23
- st.write('## Converted Text')
24
  st.write(metadata)
25
 
26
  # Clean up the temporary file
 
 
1
  import io
2
  import os
3
+ import streamlit as st
4
  import tempfile
5
 
6
+ from scripts import generate_metadata, ingest, model_name
7
 
8
 
9
  st.title('DocVerifyRAG')
 
19
  st.write(f'Created temporary file {file_path}')
20
 
21
  docs = ingest(file_path)
22
+ st.write('## Querying Together.ai API')
23
  metadata = generate_metadata(docs)
24
+ st.write(f'## Metadata Generated by {model_name}')
25
  st.write(metadata)
26
 
27
  # Clean up the temporary file
scripts.py CHANGED
@@ -72,8 +72,9 @@ def generate_metadata(docs):
72
  )
73
 
74
  # Call the LLM with the JSON schema
 
75
  chat_completion = client.chat.completions.create(
76
- model="mistralai/Mixtral-8x7B-Instruct-v0.1",
77
  messages=[
78
  {
79
  "role": "system",
 
72
  )
73
 
74
  # Call the LLM with the JSON schema
75
+ model_name = "mistralai/Mixtral-8x7B-Instruct-v0.1"
76
  chat_completion = client.chat.completions.create(
77
+ model=model_name,
78
  messages=[
79
  {
80
  "role": "system",