Spaces:
Sleeping
Sleeping
elia-waefler
commited on
Commit
·
7d56215
1
Parent(s):
a232b2b
added mock functionality
Browse files
app.py
CHANGED
@@ -1,17 +1,17 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
from dotenv import load_dotenv
|
3 |
from PyPDF2 import PdfReader
|
4 |
-
from langchain import embeddings
|
5 |
from langchain.text_splitter import CharacterTextSplitter
|
6 |
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
|
7 |
from langchain.vectorstores import FAISS
|
8 |
-
from langchain.vectorstores import faiss
|
9 |
from langchain.chat_models import ChatOpenAI
|
10 |
from langchain.memory import ConversationBufferMemory
|
11 |
from langchain.chains import ConversationalRetrievalChain
|
12 |
import os
|
13 |
import pickle
|
14 |
from datetime import datetime
|
|
|
15 |
|
16 |
|
17 |
css = '''
|
@@ -111,12 +111,16 @@ def handle_userinput(user_question):
|
|
111 |
print(message)
|
112 |
# Display AI response
|
113 |
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
|
|
|
|
|
114 |
# Display source document information if available in the message
|
115 |
if hasattr(message, 'source') and message.source:
|
116 |
st.write(f"Source Document: {message.source}", unsafe_allow_html=True)
|
117 |
|
118 |
|
|
|
119 |
def safe_vec_store():
|
|
|
120 |
os.makedirs('vectorstore', exist_ok=True)
|
121 |
filename = 'vectores' + datetime.now().strftime('%Y%m%d%H%M') + '.pkl'
|
122 |
file_path = os.path.join('vectorstore', filename)
|
@@ -127,18 +131,22 @@ def safe_vec_store():
|
|
127 |
pickle.dump(vector_store, f)
|
128 |
|
129 |
|
130 |
-
|
131 |
def main():
|
132 |
load_dotenv()
|
133 |
st.set_page_config(page_title="Doc Verify RAG", page_icon=":hospital:")
|
134 |
st.write(css, unsafe_allow_html=True)
|
135 |
-
|
136 |
st.subheader("Your documents")
|
137 |
-
pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=
|
138 |
filenames = [file.name for file in pdf_docs if file is not None]
|
139 |
|
140 |
if st.button("Process"):
|
141 |
with st.spinner("Processing"):
|
|
|
|
|
|
|
|
|
|
|
142 |
loaded_vec_store = None
|
143 |
for filename in filenames:
|
144 |
if ".pkl" in filename:
|
@@ -156,7 +164,12 @@ def main():
|
|
156 |
st.warning("merged to existing")
|
157 |
st.session_state.vectorstore = vec
|
158 |
st.session_state.conversation = get_conversation_chain(vec)
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
if "conversation" not in st.session_state:
|
162 |
st.session_state.conversation = None
|
@@ -176,31 +189,16 @@ def main():
|
|
176 |
|
177 |
if st.button("Process Classification"):
|
178 |
with st.spinner("Processing"):
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
file_path = os.path.join('vectorstore', filename)
|
183 |
-
with open(file_path, 'rb') as f:
|
184 |
-
loaded_vec_store = pickle.load(f)
|
185 |
-
raw_text = get_pdf_text(pdf_docs)
|
186 |
-
text_chunks = get_text_chunks(raw_text)
|
187 |
-
vec = get_vectorstore(text_chunks)
|
188 |
-
if loaded_vec_store:
|
189 |
-
vec.merge_from(loaded_vec_store)
|
190 |
-
st.warning("loaded vectorstore")
|
191 |
-
if "vectorstore" in st.session_state:
|
192 |
-
vec.merge_from(st.session_state.vectorstore)
|
193 |
-
st.warning("merged to existing")
|
194 |
-
st.session_state.vectorstore = vec
|
195 |
-
st.session_state.conversation = get_conversation_chain(vec)
|
196 |
-
st.success("data loaded")
|
197 |
|
198 |
# Save and Load Embeddings
|
199 |
if st.button("Save Embeddings"):
|
200 |
if "vectorstore" in st.session_state:
|
201 |
safe_vec_store()
|
202 |
# st.session_state.vectorstore.save_local("faiss_index")
|
203 |
-
st.sidebar.success("
|
204 |
else:
|
205 |
st.sidebar.warning("No embeddings to save. Please process documents first.")
|
206 |
|
|
|
1 |
+
import time
|
2 |
import streamlit as st
|
3 |
from dotenv import load_dotenv
|
4 |
from PyPDF2 import PdfReader
|
|
|
5 |
from langchain.text_splitter import CharacterTextSplitter
|
6 |
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
|
7 |
from langchain.vectorstores import FAISS
|
|
|
8 |
from langchain.chat_models import ChatOpenAI
|
9 |
from langchain.memory import ConversationBufferMemory
|
10 |
from langchain.chains import ConversationalRetrievalChain
|
11 |
import os
|
12 |
import pickle
|
13 |
from datetime import datetime
|
14 |
+
from backend.generate_metadata import extract_metadata, ingest
|
15 |
|
16 |
|
17 |
css = '''
|
|
|
111 |
print(message)
|
112 |
# Display AI response
|
113 |
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
|
114 |
+
|
115 |
+
# THIS DOESNT WORK, SOMEONE PLS FIX
|
116 |
# Display source document information if available in the message
|
117 |
if hasattr(message, 'source') and message.source:
|
118 |
st.write(f"Source Document: {message.source}", unsafe_allow_html=True)
|
119 |
|
120 |
|
121 |
+
|
122 |
def safe_vec_store():
|
123 |
+
# USE VECTARA INSTEAD
|
124 |
os.makedirs('vectorstore', exist_ok=True)
|
125 |
filename = 'vectores' + datetime.now().strftime('%Y%m%d%H%M') + '.pkl'
|
126 |
file_path = os.path.join('vectorstore', filename)
|
|
|
131 |
pickle.dump(vector_store, f)
|
132 |
|
133 |
|
|
|
134 |
def main():
|
135 |
load_dotenv()
|
136 |
st.set_page_config(page_title="Doc Verify RAG", page_icon=":hospital:")
|
137 |
st.write(css, unsafe_allow_html=True)
|
138 |
+
st.session_state.classify = False
|
139 |
st.subheader("Your documents")
|
140 |
+
pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=not st.session_state.classify)
|
141 |
filenames = [file.name for file in pdf_docs if file is not None]
|
142 |
|
143 |
if st.button("Process"):
|
144 |
with st.spinner("Processing"):
|
145 |
+
if st.session_state.classify:
|
146 |
+
# THE CLASSIFICATION APP
|
147 |
+
plain_text_doc = ingest(pdf_docs)
|
148 |
+
|
149 |
+
# NORMAL RAG
|
150 |
loaded_vec_store = None
|
151 |
for filename in filenames:
|
152 |
if ".pkl" in filename:
|
|
|
164 |
st.warning("merged to existing")
|
165 |
st.session_state.vectorstore = vec
|
166 |
st.session_state.conversation = get_conversation_chain(vec)
|
167 |
+
st.success("data loaded")
|
168 |
+
if st.session_state.classify:
|
169 |
+
# THE CLASSIFICATION APP
|
170 |
+
classification_result = extract_metadata(plain_text_doc)
|
171 |
+
st.write(classification_result)
|
172 |
+
|
173 |
|
174 |
if "conversation" not in st.session_state:
|
175 |
st.session_state.conversation = None
|
|
|
189 |
|
190 |
if st.button("Process Classification"):
|
191 |
with st.spinner("Processing"):
|
192 |
+
st.session_state.classify = True
|
193 |
+
time.sleep(3)
|
194 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
# Save and Load Embeddings
|
197 |
if st.button("Save Embeddings"):
|
198 |
if "vectorstore" in st.session_state:
|
199 |
safe_vec_store()
|
200 |
# st.session_state.vectorstore.save_local("faiss_index")
|
201 |
+
st.sidebar.success("saved")
|
202 |
else:
|
203 |
st.sidebar.warning("No embeddings to save. Please process documents first.")
|
204 |
|