Spaces:
Sleeping
Sleeping
Carlos Salgado
commited on
Commit
•
cc9e69a
1
Parent(s):
d665e88
add vectara ingest functionality
Browse files- backend/generate_metadata.py +35 -1
- backend/ingest.py +0 -7
backend/generate_metadata.py
CHANGED
@@ -1,13 +1,47 @@
|
|
1 |
import os
|
|
|
|
|
2 |
import json
|
3 |
import openai
|
|
|
4 |
from dotenv import load_dotenv
|
5 |
-
import
|
|
|
|
|
|
|
6 |
|
7 |
from schema import Metadata, BimDiscipline
|
8 |
|
9 |
load_dotenv()
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def extract_metadata(filename):
|
12 |
with open(filename, 'r') as f:
|
13 |
context = f.readlines()
|
|
|
1 |
import os
|
2 |
+
|
3 |
+
import argparse
|
4 |
import json
|
5 |
import openai
|
6 |
+
|
7 |
from dotenv import load_dotenv
|
8 |
+
from langchain_community.document_loaders import TextLoader
|
9 |
+
from langchain_community.document_loaders import UnstructuredPDFLoader
|
10 |
+
from langchain_community.embeddings.fake import FakeEmbeddings
|
11 |
+
from langchain_community.vectorstores import Vectara
|
12 |
|
13 |
from schema import Metadata, BimDiscipline
|
14 |
|
15 |
load_dotenv()
|
16 |
|
17 |
+
vectara_customer_id = os.environ['VECTARA_CUSTOMER_ID']
|
18 |
+
vectara_corpus_id = os.environ['VECTARA_CORPUS_ID']
|
19 |
+
vectara_api_key = os.environ['VECTARA_API_KEY']
|
20 |
+
|
21 |
+
vectorstore = Vectara(vectara_customer_id=vectara_customer_id,
|
22 |
+
vectara_corpus_id=vectara_corpus_id,
|
23 |
+
vectara_api_key=vectara_api_key)
|
24 |
+
|
25 |
+
|
26 |
+
def ingest(file_path):
|
27 |
+
extension = filepath.split('.')[-1]
|
28 |
+
ext = extension.lower()
|
29 |
+
if ext == 'pdf':
|
30 |
+
loader = UnstructuredPDFLoader(file_path)
|
31 |
+
elif ext == 'txt':
|
32 |
+
loader = TextLoader(file_path)
|
33 |
+
|
34 |
+
# transform locally
|
35 |
+
documents = loader.load()
|
36 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
37 |
+
docs = text_splitter.split_documents(documents)
|
38 |
+
|
39 |
+
vectara = Vectara.from_documents(docs, embedding=FakeEmbeddings(size=768))
|
40 |
+
retriever = vectara.as_retriever()
|
41 |
+
|
42 |
+
return retriever
|
43 |
+
|
44 |
+
|
45 |
def extract_metadata(filename):
|
46 |
with open(filename, 'r') as f:
|
47 |
context = f.readlines()
|
backend/ingest.py
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
from langchain_community.document_loaders import UnstructuredPDFLoader
|
2 |
-
|
3 |
-
def ingest_pdf(path):
|
4 |
-
loader = UnstructuredPDFLoader()
|
5 |
-
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
6 |
-
|
7 |
-
return data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|