Spaces:
Sleeping
Sleeping
try to fix app bug
Browse files- Dockerfile +1 -1
- app.py +21 -14
- app_V2.py +247 -0
Dockerfile
CHANGED
@@ -25,7 +25,7 @@ COPY backend .
|
|
25 |
|
26 |
# Install backend dependencies
|
27 |
COPY backend/requirements.txt .
|
28 |
-
RUN pip install --no-cache-dir -r requirements.txt
|
29 |
|
30 |
# Stage 3: Serve frontend and backend using nginx and gunicorn
|
31 |
FROM nginx:latest AS production
|
|
|
25 |
|
26 |
# Install backend dependencies
|
27 |
COPY backend/requirements.txt .
|
28 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
29 |
|
30 |
# Stage 3: Serve frontend and backend using nginx and gunicorn
|
31 |
FROM nginx:latest AS production
|
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import io
|
2 |
import os
|
3 |
import streamlit as st
|
@@ -8,6 +9,23 @@ from scripts import analyze_metadata, generate_metadata, ingest, MODEL_NAME
|
|
8 |
st.title('# DocVerifyRAG')
|
9 |
st.write('## Anomaly detection for BIM document metadata')
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
with st.form('analyze_form'):
|
12 |
st.write('Enter your file metadata in the following schema:')
|
13 |
text = st.text_input(label='Filename, Description, Discipline',
|
@@ -25,21 +43,10 @@ with st.form('analyze_form'):
|
|
25 |
st.write('## Generate metadata?')
|
26 |
uploaded_file = st.file_uploader("Choose a PDF file", type=["pdf","txt"])
|
27 |
|
28 |
-
if uploaded_file is not None:
|
29 |
-
extension = uploaded_file.name.split('.')[-1]
|
30 |
-
|
31 |
-
with tempfile.NamedTemporaryFile(delete=False) as tmp:
|
32 |
-
tmp.write(uploaded_file.read())
|
33 |
-
file_path = f'{tmp.name}.{extension}'
|
34 |
-
st.write(f'Created temporary file {file_path}')
|
35 |
-
|
36 |
-
docs = ingest(file_path)
|
37 |
-
st.write('## Querying Together.ai API')
|
38 |
-
metadata = generate_metadata(docs)
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
st.write(f'### {metadata}')
|
43 |
delete_file_button = form.form_submit_button(label='Delete file')
|
44 |
if delete_file_button:
|
45 |
os.remove(file_path)
|
|
|
1 |
+
import os
|
2 |
import io
|
3 |
import os
|
4 |
import streamlit as st
|
|
|
9 |
st.title('# DocVerifyRAG')
|
10 |
st.write('## Anomaly detection for BIM document metadata')
|
11 |
|
12 |
+
def suggest_metadata(file_upload):
|
13 |
+
extension = uploaded_file.name.split('.')[-1]
|
14 |
+
|
15 |
+
with tempfile.NamedTemporaryFile(delete=False) as tmp:
|
16 |
+
tmp.write(uploaded_file.read())
|
17 |
+
file_path = f'{tmp.name}.{extension}'
|
18 |
+
st.write(f'Created temporary file {file_path}')
|
19 |
+
|
20 |
+
st.write('## Processing file with Unstructured')
|
21 |
+
docs = ingest(file_path)
|
22 |
+
metadata = generate_metadata(docs)
|
23 |
+
|
24 |
+
st.write('## Querying Together.ai API')
|
25 |
+
form = st.form(key='generate_form')
|
26 |
+
st.write(f'## Suggested Metadata Generated by {MODEL_NAME}')
|
27 |
+
st.write(f'### {metadata}')
|
28 |
+
|
29 |
with st.form('analyze_form'):
|
30 |
st.write('Enter your file metadata in the following schema:')
|
31 |
text = st.text_input(label='Filename, Description, Discipline',
|
|
|
43 |
st.write('## Generate metadata?')
|
44 |
uploaded_file = st.file_uploader("Choose a PDF file", type=["pdf","txt"])
|
45 |
|
46 |
+
if uploaded_file is not None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
suggest_metadata(uploaded_file)
|
49 |
+
|
|
|
50 |
delete_file_button = form.form_submit_button(label='Delete file')
|
51 |
if delete_file_button:
|
52 |
os.remove(file_path)
|
app_V2.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tempfile
|
2 |
+
import streamlit as st
|
3 |
+
from PyPDF2 import PdfReader
|
4 |
+
from langchain.text_splitter import CharacterTextSplitter
|
5 |
+
from langchain.embeddings import OpenAIEmbeddings
|
6 |
+
from langchain.vectorstores import FAISS
|
7 |
+
from langchain.chat_models import ChatOpenAI
|
8 |
+
from langchain.memory import ConversationBufferMemory
|
9 |
+
from langchain.chains import ConversationalRetrievalChain
|
10 |
+
import os
|
11 |
+
import pickle
|
12 |
+
from datetime import datetime
|
13 |
+
from backend.generate_metadata import generate_metadata, ingest
|
14 |
+
|
15 |
+
MODEL_NAME = "mixtral"
|
16 |
+
css = '''
|
17 |
+
<style>
|
18 |
+
.chat-message {
|
19 |
+
padding: 1.5rem; border-radius: 0.5rem; margin-bottom: 1rem; display: flex
|
20 |
+
}
|
21 |
+
.chat-message.user {
|
22 |
+
background-color: #2b313e
|
23 |
+
}
|
24 |
+
.chat-message.bot {
|
25 |
+
background-color: #475063
|
26 |
+
}
|
27 |
+
.chat-message .avatar {
|
28 |
+
width: 20%;
|
29 |
+
}
|
30 |
+
.chat-message .avatar img {
|
31 |
+
max-width: 78px;
|
32 |
+
max-height: 78px;
|
33 |
+
border-radius: 50%;
|
34 |
+
object-fit: cover;
|
35 |
+
}
|
36 |
+
.chat-message .message {
|
37 |
+
width: 80%;
|
38 |
+
padding: 0 1.5rem;
|
39 |
+
color: #fff;
|
40 |
+
}
|
41 |
+
'''
|
42 |
+
bot_template = '''
|
43 |
+
<div class="chat-message bot">
|
44 |
+
<div class="avatar">
|
45 |
+
<img src="https://i.ibb.co/cN0nmSj/Screenshot-2023-05-28-at-02-37-21.png"
|
46 |
+
style="max-height: 78px; max-width: 78px; border-radius: 50%; object-fit: cover;">
|
47 |
+
</div>
|
48 |
+
<div class="message">{{MSG}}</div>
|
49 |
+
</div>
|
50 |
+
'''
|
51 |
+
user_template = '''
|
52 |
+
<div class="chat-message user">
|
53 |
+
<div class="avatar">
|
54 |
+
<img src="https://i.ibb.co/rdZC7LZ/Photo-logo-1.png">
|
55 |
+
</div>
|
56 |
+
<div class="message">{{MSG}}</div>
|
57 |
+
</div>
|
58 |
+
'''
|
59 |
+
|
60 |
+
|
61 |
+
def get_pdf_text(pdf_docs):
|
62 |
+
text = ""
|
63 |
+
for pdf in pdf_docs:
|
64 |
+
pdf_reader = PdfReader(pdf)
|
65 |
+
for page in pdf_reader.pages:
|
66 |
+
text += page.extract_text()
|
67 |
+
return text
|
68 |
+
|
69 |
+
|
70 |
+
def get_text_chunks(text):
|
71 |
+
text_splitter = CharacterTextSplitter(
|
72 |
+
separator="\n",
|
73 |
+
chunk_size=1000,
|
74 |
+
chunk_overlap=200,
|
75 |
+
length_function=len
|
76 |
+
)
|
77 |
+
chunks = text_splitter.split_text(text)
|
78 |
+
return chunks
|
79 |
+
|
80 |
+
|
81 |
+
def get_vectorstore(text_chunks):
|
82 |
+
embeddings = OpenAIEmbeddings()
|
83 |
+
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
|
84 |
+
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
85 |
+
return vectorstore
|
86 |
+
|
87 |
+
|
88 |
+
def get_conversation_chain(vectorstore):
|
89 |
+
llm = ChatOpenAI()
|
90 |
+
# llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
|
91 |
+
|
92 |
+
memory = ConversationBufferMemory(
|
93 |
+
memory_key='chat_history', return_messages=True)
|
94 |
+
conversation_chain = ConversationalRetrievalChain.from_llm(
|
95 |
+
llm=llm,
|
96 |
+
retriever=vectorstore.as_retriever(),
|
97 |
+
memory=memory
|
98 |
+
)
|
99 |
+
return conversation_chain
|
100 |
+
|
101 |
+
|
102 |
+
def handle_userinput(user_question):
|
103 |
+
response = st.session_state.conversation({'question': user_question})
|
104 |
+
st.session_state.chat_history = response['chat_history']
|
105 |
+
|
106 |
+
for i, message in enumerate(st.session_state.chat_history):
|
107 |
+
# Display user message
|
108 |
+
if i % 2 == 0:
|
109 |
+
st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
|
110 |
+
else:
|
111 |
+
print(message)
|
112 |
+
# Display AI response
|
113 |
+
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
|
114 |
+
|
115 |
+
|
116 |
+
def safe_vec_store():
|
117 |
+
# USE VECTARA INSTEAD
|
118 |
+
os.makedirs('vectorstore', exist_ok=True)
|
119 |
+
filename = 'vectors' + datetime.now().strftime('%Y%m%d%H%M') + '.pkl'
|
120 |
+
file_path = os.path.join('vectorstore', filename)
|
121 |
+
vector_store = st.session_state.vectorstore
|
122 |
+
|
123 |
+
# Serialize and save the entire FAISS object using pickle
|
124 |
+
with open(file_path, 'wb') as f:
|
125 |
+
pickle.dump(vector_store, f)
|
126 |
+
|
127 |
+
|
128 |
+
"""
|
129 |
+
def main():
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
st.subheader("Your documents")
|
134 |
+
|
135 |
+
if st.session_state.classify:
|
136 |
+
pdf_doc = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=False)
|
137 |
+
else:
|
138 |
+
pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
|
139 |
+
filenames = [file.name for file in pdf_docs if file is not None]
|
140 |
+
if st.button("Process"):
|
141 |
+
with st.spinner("Processing"):
|
142 |
+
if st.session_state.classify:
|
143 |
+
# THE CLASSIFICATION APP
|
144 |
+
st.write("Classifying")
|
145 |
+
plain_text_doc = ingest(pdf_doc.name)
|
146 |
+
classification_result = generate_metadata(plain_text_doc)
|
147 |
+
st.write(classification_result)
|
148 |
+
else:
|
149 |
+
# NORMAL RAG
|
150 |
+
loaded_vec_store = None
|
151 |
+
for filename in filenames:
|
152 |
+
if ".pkl" in filename:
|
153 |
+
file_path = os.path.join('vectorstore', filename)
|
154 |
+
with open(file_path, 'rb') as f:
|
155 |
+
loaded_vec_store = pickle.load(f)
|
156 |
+
raw_text = get_pdf_text(pdf_docs)
|
157 |
+
text_chunks = get_text_chunks(raw_text)
|
158 |
+
vec = get_vectorstore(text_chunks)
|
159 |
+
if loaded_vec_store:
|
160 |
+
vec.merge_from(loaded_vec_store)
|
161 |
+
st.warning("loaded vectorstore")
|
162 |
+
if "vectorstore" in st.session_state:
|
163 |
+
vec.merge_from(st.session_state.vectorstore)
|
164 |
+
st.warning("merged to existing")
|
165 |
+
st.session_state.vectorstore = vec
|
166 |
+
st.session_state.conversation = get_conversation_chain(vec)
|
167 |
+
st.success("data loaded")
|
168 |
+
|
169 |
+
if "conversation" not in st.session_state:
|
170 |
+
st.session_state.conversation = None
|
171 |
+
if "chat_history" not in st.session_state:
|
172 |
+
st.session_state.chat_history = None
|
173 |
+
|
174 |
+
user_question = st.text_input("Ask a question about your documents:")
|
175 |
+
if user_question:
|
176 |
+
handle_userinput(user_question)
|
177 |
+
with st.sidebar:
|
178 |
+
st.subheader("Classification instructions")
|
179 |
+
classifier_docs = st.file_uploader("Upload your instructions here and click on 'Process'",
|
180 |
+
accept_multiple_files=True)
|
181 |
+
filenames = [file.name for file in classifier_docs if file is not None]
|
182 |
+
|
183 |
+
if st.button("Process Classification"):
|
184 |
+
st.session_state.classify = True
|
185 |
+
with st.spinner("Processing"):
|
186 |
+
st.warning("set classify")
|
187 |
+
time.sleep(3)
|
188 |
+
|
189 |
+
if st.button("Save Embeddings"):
|
190 |
+
if "vectorstore" in st.session_state:
|
191 |
+
safe_vec_store()
|
192 |
+
# st.session_state.vectorstore.save_local("faiss_index")
|
193 |
+
st.sidebar.success("saved")
|
194 |
+
else:
|
195 |
+
st.sidebar.warning("No embeddings to save. Please process documents first.")
|
196 |
+
|
197 |
+
if st.button("Load Embeddings"):
|
198 |
+
st.warning("this function is not in use, just upload the vectorstore")
|
199 |
+
"""
|
200 |
+
|
201 |
+
|
202 |
+
def main():
|
203 |
+
|
204 |
+
st.set_page_config(page_title="Doc Verify RAG", page_icon=":mag:")
|
205 |
+
st.write('Anomaly detection for document metadata', unsafe_allow_html=True)
|
206 |
+
st.header("Doc Verify RAG :mag:")
|
207 |
+
|
208 |
+
def set_pw():
|
209 |
+
st.session_state.openai_api_key = True
|
210 |
+
|
211 |
+
if "openai_api_key" not in st.session_state:
|
212 |
+
st.session_state.openai_api_key = False
|
213 |
+
if "openai_org" not in st.session_state:
|
214 |
+
st.session_state.openai_org = False
|
215 |
+
if "classify" not in st.session_state:
|
216 |
+
st.session_state.classify = False
|
217 |
+
|
218 |
+
col1, col2 = st.columns(2)
|
219 |
+
with col1:
|
220 |
+
uploaded_file = st.file_uploader("Choose a PDF file", type=["pdf", "txt"])
|
221 |
+
|
222 |
+
if uploaded_file is not None:
|
223 |
+
try:
|
224 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]) as tmp:
|
225 |
+
tmp.write(uploaded_file.read())
|
226 |
+
file_path = tmp.name
|
227 |
+
st.write(f'Created temporary file {file_path}')
|
228 |
+
|
229 |
+
docs = ingest(file_path)
|
230 |
+
st.write('## Querying Together.ai API')
|
231 |
+
metadata = generate_metadata(docs)
|
232 |
+
st.write(f'## Metadata Generated by {MODEL_NAME}')
|
233 |
+
st.write(metadata)
|
234 |
+
|
235 |
+
# Clean up the temporary file
|
236 |
+
os.remove(file_path)
|
237 |
+
|
238 |
+
except Exception as e:
|
239 |
+
st.error(f'Error: {e}')
|
240 |
+
with col2:
|
241 |
+
OPENAI_API_KEY = st.text_input("OPENAI API KEY:", type="password",
|
242 |
+
disabled=st.session_state.openai_api_key, on_change=set_pw)
|
243 |
+
classification = st.file_uploader("upload the metadata", type=["csv", "txt"])
|
244 |
+
|
245 |
+
|
246 |
+
if __name__ == '__main__':
|
247 |
+
main()
|